Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfvd1imp Structured version   Unicode version

Theorem dfvd1imp 36804
Description: Left-to-right part of definition of virtual deduction. (Contributed by Alan Sare, 21-Apr-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
dfvd1imp  |-  ( (.
ph 
->.  ps ).  ->  ( ph  ->  ps ) )

Proof of Theorem dfvd1imp
StepHypRef Expression
1 df-vd1 36799 . 2  |-  ( (.
ph 
->.  ps ).  <->  ( ph  ->  ps ) )
21biimpi 197 1  |-  ( (.
ph 
->.  ps ).  ->  ( ph  ->  ps ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4   (.wvd1 36798
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 188  df-vd1 36799
This theorem is referenced by:  gen11  36854
  Copyright terms: Public domain W3C validator