Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dftr6 Structured version   Unicode version

Theorem dftr6 29963
Description: A potential definition of transitivity for sets. (Contributed by Scott Fenton, 18-Mar-2012.)
Hypothesis
Ref Expression
dftr6.1  |-  A  e. 
_V
Assertion
Ref Expression
dftr6  |-  ( Tr  A  <->  A  e.  ( _V  \  ran  ( (  _E  o.  _E  )  \  _E  ) )
)

Proof of Theorem dftr6
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dftr6.1 . . . . 5  |-  A  e. 
_V
21elrn 5064 . . . 4  |-  ( A  e.  ran  ( (  _E  o.  _E  )  \  _E  )  <->  E. x  x ( (  _E  o.  _E  )  \  _E  ) A )
3 brdif 4445 . . . . . 6  |-  ( x ( (  _E  o.  _E  )  \  _E  ) A 
<->  ( x (  _E  o.  _E  ) A  /\  -.  x  _E  A ) )
4 vex 3062 . . . . . . . . 9  |-  x  e. 
_V
54, 1brco 4994 . . . . . . . 8  |-  ( x (  _E  o.  _E  ) A  <->  E. y ( x  _E  y  /\  y  _E  A ) )
6 epel 4737 . . . . . . . . . 10  |-  ( x  _E  y  <->  x  e.  y )
71epelc 4736 . . . . . . . . . 10  |-  ( y  _E  A  <->  y  e.  A )
86, 7anbi12i 695 . . . . . . . . 9  |-  ( ( x  _E  y  /\  y  _E  A )  <->  ( x  e.  y  /\  y  e.  A )
)
98exbii 1688 . . . . . . . 8  |-  ( E. y ( x  _E  y  /\  y  _E  A )  <->  E. y
( x  e.  y  /\  y  e.  A
) )
105, 9bitri 249 . . . . . . 7  |-  ( x (  _E  o.  _E  ) A  <->  E. y ( x  e.  y  /\  y  e.  A ) )
111epelc 4736 . . . . . . . 8  |-  ( x  _E  A  <->  x  e.  A )
1211notbii 294 . . . . . . 7  |-  ( -.  x  _E  A  <->  -.  x  e.  A )
1310, 12anbi12i 695 . . . . . 6  |-  ( ( x (  _E  o.  _E  ) A  /\  -.  x  _E  A )  <->  ( E. y ( x  e.  y  /\  y  e.  A )  /\  -.  x  e.  A )
)
14 19.41v 1795 . . . . . . 7  |-  ( E. y ( ( x  e.  y  /\  y  e.  A )  /\  -.  x  e.  A )  <->  ( E. y ( x  e.  y  /\  y  e.  A )  /\  -.  x  e.  A )
)
15 exanali 1691 . . . . . . 7  |-  ( E. y ( ( x  e.  y  /\  y  e.  A )  /\  -.  x  e.  A )  <->  -. 
A. y ( ( x  e.  y  /\  y  e.  A )  ->  x  e.  A ) )
1614, 15bitr3i 251 . . . . . 6  |-  ( ( E. y ( x  e.  y  /\  y  e.  A )  /\  -.  x  e.  A )  <->  -. 
A. y ( ( x  e.  y  /\  y  e.  A )  ->  x  e.  A ) )
173, 13, 163bitri 271 . . . . 5  |-  ( x ( (  _E  o.  _E  )  \  _E  ) A 
<->  -.  A. y ( ( x  e.  y  /\  y  e.  A
)  ->  x  e.  A ) )
1817exbii 1688 . . . 4  |-  ( E. x  x ( (  _E  o.  _E  )  \  _E  ) A  <->  E. x  -.  A. y
( ( x  e.  y  /\  y  e.  A )  ->  x  e.  A ) )
19 exnal 1669 . . . 4  |-  ( E. x  -.  A. y
( ( x  e.  y  /\  y  e.  A )  ->  x  e.  A )  <->  -.  A. x A. y ( ( x  e.  y  /\  y  e.  A )  ->  x  e.  A ) )
202, 18, 193bitri 271 . . 3  |-  ( A  e.  ran  ( (  _E  o.  _E  )  \  _E  )  <->  -.  A. x A. y ( ( x  e.  y  /\  y  e.  A )  ->  x  e.  A ) )
2120con2bii 330 . 2  |-  ( A. x A. y ( ( x  e.  y  /\  y  e.  A )  ->  x  e.  A )  <->  -.  A  e.  ran  ( (  _E  o.  _E  )  \  _E  )
)
22 dftr2 4491 . 2  |-  ( Tr  A  <->  A. x A. y
( ( x  e.  y  /\  y  e.  A )  ->  x  e.  A ) )
23 eldif 3424 . . 3  |-  ( A  e.  ( _V  \  ran  ( (  _E  o.  _E  )  \  _E  )
)  <->  ( A  e. 
_V  /\  -.  A  e.  ran  ( (  _E  o.  _E  )  \  _E  ) ) )
241, 23mpbiran 919 . 2  |-  ( A  e.  ( _V  \  ran  ( (  _E  o.  _E  )  \  _E  )
)  <->  -.  A  e.  ran  ( (  _E  o.  _E  )  \  _E  )
)
2521, 22, 243bitr4i 277 1  |-  ( Tr  A  <->  A  e.  ( _V  \  ran  ( (  _E  o.  _E  )  \  _E  ) )
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 367   A.wal 1403   E.wex 1633    e. wcel 1842   _Vcvv 3059    \ cdif 3411   class class class wbr 4395   Tr wtr 4489    _E cep 4732   ran crn 4824    o. ccom 4827
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-sep 4517  ax-nul 4525  ax-pr 4630
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-rab 2763  df-v 3061  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-nul 3739  df-if 3886  df-sn 3973  df-pr 3975  df-op 3979  df-uni 4192  df-br 4396  df-opab 4454  df-tr 4490  df-eprel 4734  df-cnv 4831  df-co 4832  df-dm 4833  df-rn 4834
This theorem is referenced by:  eltrans  30229
  Copyright terms: Public domain W3C validator