MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dftr2 Structured version   Unicode version

Theorem dftr2 4520
Description: An alternate way of defining a transitive class. Exercise 7 of [TakeutiZaring] p. 40. (Contributed by NM, 24-Apr-1994.)
Assertion
Ref Expression
dftr2  |-  ( Tr  A  <->  A. x A. y
( ( x  e.  y  /\  y  e.  A )  ->  x  e.  A ) )
Distinct variable group:    x, y, A

Proof of Theorem dftr2
StepHypRef Expression
1 dfss2 3453 . 2  |-  ( U. A  C_  A  <->  A. x
( x  e.  U. A  ->  x  e.  A
) )
2 df-tr 4519 . 2  |-  ( Tr  A  <->  U. A  C_  A
)
3 19.23v 1811 . . . 4  |-  ( A. y ( ( x  e.  y  /\  y  e.  A )  ->  x  e.  A )  <->  ( E. y ( x  e.  y  /\  y  e.  A )  ->  x  e.  A ) )
4 eluni 4222 . . . . 5  |-  ( x  e.  U. A  <->  E. y
( x  e.  y  /\  y  e.  A
) )
54imbi1i 326 . . . 4  |-  ( ( x  e.  U. A  ->  x  e.  A )  <-> 
( E. y ( x  e.  y  /\  y  e.  A )  ->  x  e.  A ) )
63, 5bitr4i 255 . . 3  |-  ( A. y ( ( x  e.  y  /\  y  e.  A )  ->  x  e.  A )  <->  ( x  e.  U. A  ->  x  e.  A ) )
76albii 1685 . 2  |-  ( A. x A. y ( ( x  e.  y  /\  y  e.  A )  ->  x  e.  A )  <->  A. x ( x  e. 
U. A  ->  x  e.  A ) )
81, 2, 73bitr4i 280 1  |-  ( Tr  A  <->  A. x A. y
( ( x  e.  y  /\  y  e.  A )  ->  x  e.  A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370   A.wal 1435   E.wex 1657    e. wcel 1872    C_ wss 3436   U.cuni 4219   Tr wtr 4518
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2057  ax-ext 2401
This theorem depends on definitions:  df-bi 188  df-an 372  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2568  df-v 3082  df-in 3443  df-ss 3450  df-uni 4220  df-tr 4519
This theorem is referenced by:  dftr5  4521  trel  4525  ordelord  5464  suctr  5525  ordom  6715  hartogs  8068  card2on  8078  trcl  8220  tskwe  8392  ondomon  8995  dftr6  30397  elpotr  30434  hftr  30954  dford4  35854  tratrb  36867  trsbc  36871  truniALT  36872  sspwtr  37182  sspwtrALT  37183  sspwtrALT2  37192  pwtrVD  37193  pwtrrVD  37194  suctrALT  37195  suctrALT2VD  37205  suctrALT2  37206  tratrbVD  37231  trsbcVD  37247  truniALTVD  37248  trintALTVD  37250  trintALT  37251  suctrALTcf  37292  suctrALTcfVD  37293  suctrALT3  37294
  Copyright terms: Public domain W3C validator