MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dftpos2 Structured version   Unicode version

Theorem dftpos2 6998
Description: Alternate definition of tpos when  F has relational domain. (Contributed by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
dftpos2  |-  ( Rel 
dom  F  -> tpos  F  =  ( F  o.  (
x  e.  `' dom  F 
|->  U. `' { x } ) ) )
Distinct variable group:    x, F

Proof of Theorem dftpos2
StepHypRef Expression
1 dmtpos 6993 . . 3  |-  ( Rel 
dom  F  ->  dom tpos  F  =  `' dom  F )
21reseq2d 5125 . 2  |-  ( Rel 
dom  F  ->  (tpos  F  |` 
dom tpos  F )  =  (tpos 
F  |`  `' dom  F
) )
3 reltpos 6986 . . 3  |-  Rel tpos  F
4 resdm 5166 . . 3  |-  ( Rel tpos  F  ->  (tpos  F  |`  dom tpos  F )  = tpos  F
)
53, 4ax-mp 5 . 2  |-  (tpos  F  |` 
dom tpos  F )  = tpos  F
6 df-tpos 6981 . . . 4  |- tpos  F  =  ( F  o.  (
x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } ) )
76reseq1i 5121 . . 3  |-  (tpos  F  |`  `' dom  F )  =  ( ( F  o.  ( x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } ) )  |`  `' dom  F )
8 resco 5359 . . 3  |-  ( ( F  o.  ( x  e.  ( `' dom  F  u.  { (/) } ) 
|->  U. `' { x } ) )  |`  `' dom  F )  =  ( F  o.  (
( x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } )  |`  `' dom  F ) )
9 ssun1 3635 . . . . 5  |-  `' dom  F 
C_  ( `' dom  F  u.  { (/) } )
10 resmpt 5174 . . . . 5  |-  ( `' dom  F  C_  ( `' dom  F  u.  { (/)
} )  ->  (
( x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } )  |`  `' dom  F )  =  ( x  e.  `' dom  F  |->  U. `' { x } ) )
119, 10ax-mp 5 . . . 4  |-  ( ( x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } )  |`  `' dom  F )  =  ( x  e.  `' dom  F  |->  U. `' { x } )
1211coeq2i 5015 . . 3  |-  ( F  o.  ( ( x  e.  ( `' dom  F  u.  { (/) } ) 
|->  U. `' { x } )  |`  `' dom  F ) )  =  ( F  o.  ( x  e.  `' dom  F  |-> 
U. `' { x } ) )
137, 8, 123eqtri 2462 . 2  |-  (tpos  F  |`  `' dom  F )  =  ( F  o.  (
x  e.  `' dom  F 
|->  U. `' { x } ) )
142, 5, 133eqtr3g 2493 1  |-  ( Rel 
dom  F  -> tpos  F  =  ( F  o.  (
x  e.  `' dom  F 
|->  U. `' { x } ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1437    u. cun 3440    C_ wss 3442   (/)c0 3767   {csn 4002   U.cuni 4222    |-> cmpt 4484   `'ccnv 4853   dom cdm 4854    |` cres 4856    o. ccom 4858   Rel wrel 4859  tpos ctpos 6980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-ral 2787  df-rex 2788  df-rab 2791  df-v 3089  df-sbc 3306  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-op 4009  df-uni 4223  df-br 4427  df-opab 4485  df-mpt 4486  df-id 4769  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-iota 5565  df-fun 5603  df-fn 5604  df-fv 5609  df-tpos 6981
This theorem is referenced by:  tposf12  7006
  Copyright terms: Public domain W3C validator