MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dftp2 Structured version   Visualization version   Unicode version

Theorem dftp2 4020
Description: Alternate definition of unordered triple of classes. Special case of Definition 5.3 of [TakeutiZaring] p. 16. (Contributed by NM, 8-Apr-1994.)
Assertion
Ref Expression
dftp2  |-  { A ,  B ,  C }  =  { x  |  ( x  =  A  \/  x  =  B  \/  x  =  C ) }
Distinct variable groups:    x, A    x, B    x, C

Proof of Theorem dftp2
StepHypRef Expression
1 vex 3050 . . 3  |-  x  e. 
_V
21eltp 4019 . 2  |-  ( x  e.  { A ,  B ,  C }  <->  ( x  =  A  \/  x  =  B  \/  x  =  C )
)
32abbi2i 2568 1  |-  { A ,  B ,  C }  =  { x  |  ( x  =  A  \/  x  =  B  \/  x  =  C ) }
Colors of variables: wff setvar class
Syntax hints:    \/ w3o 985    = wceq 1446   {cab 2439   {ctp 3974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1671  ax-4 1684  ax-5 1760  ax-6 1807  ax-7 1853  ax-10 1917  ax-11 1922  ax-12 1935  ax-13 2093  ax-ext 2433
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 987  df-tru 1449  df-ex 1666  df-nf 1670  df-sb 1800  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2583  df-v 3049  df-un 3411  df-sn 3971  df-pr 3973  df-tp 3975
This theorem is referenced by:  tprot  4070  tpid3g  4090  en3lplem2  8125  tpid3gVD  37248  en3lplem2VD  37250
  Copyright terms: Public domain W3C validator