Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfss3f Structured version   Unicode version

Theorem dfss3f 3496
 Description: Equivalence for subclass relation, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 20-Mar-2004.)
Hypotheses
Ref Expression
dfss2f.1
dfss2f.2
Assertion
Ref Expression
dfss3f

Proof of Theorem dfss3f
StepHypRef Expression
1 dfss2f.1 . . 3
2 dfss2f.2 . . 3
31, 2dfss2f 3495 . 2
4 df-ral 2819 . 2
53, 4bitr4i 252 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wb 184  wal 1377   wcel 1767  wnfc 2615  wral 2814   wss 3476 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ral 2819  df-in 3483  df-ss 3490 This theorem is referenced by:  nfss  3497  sigaclcu2  27788  heibor1  29937  ssfiunibd  31114  icccncfext  31254  bnj1498  33214
 Copyright terms: Public domain W3C validator