Users' Mathboxes Mathbox for Drahflow < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfrtrcl2 Structured version   Unicode version

Theorem dfrtrcl2 28546
Description: The two definitions  t* and  t*rec of the reflexive, transitive closure coincide if  R is indeed a relation. (Contributed by Drahflow, 12-Nov-2015.)
Hypotheses
Ref Expression
drrtrcl2.1  |-  ( ph  ->  Rel  R )
drrtrcl2.2  |-  ( ph  ->  R  e.  _V )
Assertion
Ref Expression
dfrtrcl2  |-  ( ph  ->  ( t* `  R )  =  ( t*rec `  R
) )

Proof of Theorem dfrtrcl2
Dummy variables  x  z  s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2468 . . . 4  |-  ( ph  ->  ( x  e.  _V  |->  |^|
{ z  |  ( (  _I  |`  ( dom  x  u.  ran  x
) )  C_  z  /\  x  C_  z  /\  ( z  o.  z
)  C_  z ) } )  =  ( x  e.  _V  |->  |^|
{ z  |  ( (  _I  |`  ( dom  x  u.  ran  x
) )  C_  z  /\  x  C_  z  /\  ( z  o.  z
)  C_  z ) } ) )
2 dmeq 5201 . . . . . . . . . . 11  |-  ( x  =  R  ->  dom  x  =  dom  R )
3 rneq 5226 . . . . . . . . . . 11  |-  ( x  =  R  ->  ran  x  =  ran  R )
42, 3uneq12d 3659 . . . . . . . . . 10  |-  ( x  =  R  ->  ( dom  x  u.  ran  x
)  =  ( dom 
R  u.  ran  R
) )
54reseq2d 5271 . . . . . . . . 9  |-  ( x  =  R  ->  (  _I  |`  ( dom  x  u.  ran  x ) )  =  (  _I  |`  ( dom  R  u.  ran  R
) ) )
65sseq1d 3531 . . . . . . . 8  |-  ( x  =  R  ->  (
(  _I  |`  ( dom  x  u.  ran  x
) )  C_  z  <->  (  _I  |`  ( dom  R  u.  ran  R ) )  C_  z )
)
7 id 22 . . . . . . . . 9  |-  ( x  =  R  ->  x  =  R )
87sseq1d 3531 . . . . . . . 8  |-  ( x  =  R  ->  (
x  C_  z  <->  R  C_  z
) )
96, 83anbi12d 1300 . . . . . . 7  |-  ( x  =  R  ->  (
( (  _I  |`  ( dom  x  u.  ran  x
) )  C_  z  /\  x  C_  z  /\  ( z  o.  z
)  C_  z )  <->  ( (  _I  |`  ( dom  R  u.  ran  R
) )  C_  z  /\  R  C_  z  /\  ( z  o.  z
)  C_  z )
) )
109abbidv 2603 . . . . . 6  |-  ( x  =  R  ->  { z  |  ( (  _I  |`  ( dom  x  u. 
ran  x ) ) 
C_  z  /\  x  C_  z  /\  ( z  o.  z )  C_  z ) }  =  { z  |  ( (  _I  |`  ( dom  R  u.  ran  R
) )  C_  z  /\  R  C_  z  /\  ( z  o.  z
)  C_  z ) } )
1110inteqd 4287 . . . . 5  |-  ( x  =  R  ->  |^| { z  |  ( (  _I  |`  ( dom  x  u. 
ran  x ) ) 
C_  z  /\  x  C_  z  /\  ( z  o.  z )  C_  z ) }  =  |^| { z  |  ( (  _I  |`  ( dom  R  u.  ran  R
) )  C_  z  /\  R  C_  z  /\  ( z  o.  z
)  C_  z ) } )
1211adantl 466 . . . 4  |-  ( (
ph  /\  x  =  R )  ->  |^| { z  |  ( (  _I  |`  ( dom  x  u. 
ran  x ) ) 
C_  z  /\  x  C_  z  /\  ( z  o.  z )  C_  z ) }  =  |^| { z  |  ( (  _I  |`  ( dom  R  u.  ran  R
) )  C_  z  /\  R  C_  z  /\  ( z  o.  z
)  C_  z ) } )
13 drrtrcl2.2 . . . 4  |-  ( ph  ->  R  e.  _V )
14 drrtrcl2.1 . . . . . . . . . 10  |-  ( ph  ->  Rel  R )
15 relfld 5531 . . . . . . . . . 10  |-  ( Rel 
R  ->  U. U. R  =  ( dom  R  u.  ran  R ) )
1614, 15syl 16 . . . . . . . . 9  |-  ( ph  ->  U. U. R  =  ( dom  R  u.  ran  R ) )
1716eqcomd 2475 . . . . . . . 8  |-  ( ph  ->  ( dom  R  u.  ran  R )  =  U. U. R )
1814, 13rtrclreclem.refl 28542 . . . . . . . . 9  |-  ( ph  ->  (  _I  |`  U. U. R )  C_  (
t*rec `  R
) )
19 id 22 . . . . . . . . . . 11  |-  ( ( dom  R  u.  ran  R )  =  U. U. R  ->  ( dom  R  u.  ran  R )  = 
U. U. R )
2019reseq2d 5271 . . . . . . . . . 10  |-  ( ( dom  R  u.  ran  R )  =  U. U. R  ->  (  _I  |`  ( dom  R  u.  ran  R
) )  =  (  _I  |`  U. U. R
) )
2120sseq1d 3531 . . . . . . . . 9  |-  ( ( dom  R  u.  ran  R )  =  U. U. R  ->  ( (  _I  |`  ( dom  R  u.  ran  R ) )  C_  ( t*rec `  R )  <->  (  _I  |` 
U. U. R )  C_  ( t*rec `  R ) ) )
2218, 21syl5ibr 221 . . . . . . . 8  |-  ( ( dom  R  u.  ran  R )  =  U. U. R  ->  ( ph  ->  (  _I  |`  ( dom  R  u.  ran  R ) )  C_  ( t*rec `  R )
) )
2317, 22mpcom 36 . . . . . . 7  |-  ( ph  ->  (  _I  |`  ( dom  R  u.  ran  R
) )  C_  (
t*rec `  R
) )
2414, 13rtrclreclem.subset 28543 . . . . . . 7  |-  ( ph  ->  R  C_  ( t*rec `  R )
)
2514, 13rtrclreclem.trans 28544 . . . . . . 7  |-  ( ph  ->  ( ( t*rec
`  R )  o.  ( t*rec `  R ) )  C_  ( t*rec `  R ) )
26 fvex 5874 . . . . . . . 8  |-  ( t*rec `  R )  e.  _V
27 sseq2 3526 . . . . . . . . . . 11  |-  ( z  =  ( t*rec
`  R )  -> 
( (  _I  |`  ( dom  R  u.  ran  R
) )  C_  z  <->  (  _I  |`  ( dom  R  u.  ran  R ) )  C_  ( t*rec `  R )
) )
28 sseq2 3526 . . . . . . . . . . 11  |-  ( z  =  ( t*rec
`  R )  -> 
( R  C_  z  <->  R 
C_  ( t*rec
`  R ) ) )
29 id 22 . . . . . . . . . . . . 13  |-  ( z  =  ( t*rec
`  R )  -> 
z  =  ( t*rec `  R )
)
3029, 29coeq12d 5165 . . . . . . . . . . . 12  |-  ( z  =  ( t*rec
`  R )  -> 
( z  o.  z
)  =  ( ( t*rec `  R
)  o.  ( t*rec `  R )
) )
3130, 29sseq12d 3533 . . . . . . . . . . 11  |-  ( z  =  ( t*rec
`  R )  -> 
( ( z  o.  z )  C_  z  <->  ( ( t*rec `  R )  o.  (
t*rec `  R
) )  C_  (
t*rec `  R
) ) )
3227, 28, 313anbi123d 1299 . . . . . . . . . 10  |-  ( z  =  ( t*rec
`  R )  -> 
( ( (  _I  |`  ( dom  R  u.  ran  R ) )  C_  z  /\  R  C_  z  /\  ( z  o.  z
)  C_  z )  <->  ( (  _I  |`  ( dom  R  u.  ran  R
) )  C_  (
t*rec `  R
)  /\  R  C_  (
t*rec `  R
)  /\  ( (
t*rec `  R
)  o.  ( t*rec `  R )
)  C_  ( t*rec `  R )
) ) )
3332a1i 11 . . . . . . . . 9  |-  ( ph  ->  ( z  =  ( t*rec `  R
)  ->  ( (
(  _I  |`  ( dom  R  u.  ran  R
) )  C_  z  /\  R  C_  z  /\  ( z  o.  z
)  C_  z )  <->  ( (  _I  |`  ( dom  R  u.  ran  R
) )  C_  (
t*rec `  R
)  /\  R  C_  (
t*rec `  R
)  /\  ( (
t*rec `  R
)  o.  ( t*rec `  R )
)  C_  ( t*rec `  R )
) ) ) )
3433alrimiv 1695 . . . . . . . 8  |-  ( ph  ->  A. z ( z  =  ( t*rec
`  R )  -> 
( ( (  _I  |`  ( dom  R  u.  ran  R ) )  C_  z  /\  R  C_  z  /\  ( z  o.  z
)  C_  z )  <->  ( (  _I  |`  ( dom  R  u.  ran  R
) )  C_  (
t*rec `  R
)  /\  R  C_  (
t*rec `  R
)  /\  ( (
t*rec `  R
)  o.  ( t*rec `  R )
)  C_  ( t*rec `  R )
) ) ) )
35 elabgt 3247 . . . . . . . 8  |-  ( ( ( t*rec `  R )  e.  _V  /\ 
A. z ( z  =  ( t*rec
`  R )  -> 
( ( (  _I  |`  ( dom  R  u.  ran  R ) )  C_  z  /\  R  C_  z  /\  ( z  o.  z
)  C_  z )  <->  ( (  _I  |`  ( dom  R  u.  ran  R
) )  C_  (
t*rec `  R
)  /\  R  C_  (
t*rec `  R
)  /\  ( (
t*rec `  R
)  o.  ( t*rec `  R )
)  C_  ( t*rec `  R )
) ) ) )  ->  ( ( t*rec `  R )  e.  { z  |  ( (  _I  |`  ( dom  R  u.  ran  R
) )  C_  z  /\  R  C_  z  /\  ( z  o.  z
)  C_  z ) } 
<->  ( (  _I  |`  ( dom  R  u.  ran  R
) )  C_  (
t*rec `  R
)  /\  R  C_  (
t*rec `  R
)  /\  ( (
t*rec `  R
)  o.  ( t*rec `  R )
)  C_  ( t*rec `  R )
) ) )
3626, 34, 35sylancr 663 . . . . . . 7  |-  ( ph  ->  ( ( t*rec
`  R )  e. 
{ z  |  ( (  _I  |`  ( dom  R  u.  ran  R
) )  C_  z  /\  R  C_  z  /\  ( z  o.  z
)  C_  z ) } 
<->  ( (  _I  |`  ( dom  R  u.  ran  R
) )  C_  (
t*rec `  R
)  /\  R  C_  (
t*rec `  R
)  /\  ( (
t*rec `  R
)  o.  ( t*rec `  R )
)  C_  ( t*rec `  R )
) ) )
3723, 24, 25, 36mpbir3and 1179 . . . . . 6  |-  ( ph  ->  ( t*rec `  R )  e.  {
z  |  ( (  _I  |`  ( dom  R  u.  ran  R ) )  C_  z  /\  R  C_  z  /\  (
z  o.  z ) 
C_  z ) } )
38 ne0i 3791 . . . . . 6  |-  ( ( t*rec `  R
)  e.  { z  |  ( (  _I  |`  ( dom  R  u.  ran  R ) )  C_  z  /\  R  C_  z  /\  ( z  o.  z
)  C_  z ) }  ->  { z  |  ( (  _I  |`  ( dom  R  u.  ran  R
) )  C_  z  /\  R  C_  z  /\  ( z  o.  z
)  C_  z ) }  =/=  (/) )
3937, 38syl 16 . . . . 5  |-  ( ph  ->  { z  |  ( (  _I  |`  ( dom  R  u.  ran  R
) )  C_  z  /\  R  C_  z  /\  ( z  o.  z
)  C_  z ) }  =/=  (/) )
40 intex 4603 . . . . 5  |-  ( { z  |  ( (  _I  |`  ( dom  R  u.  ran  R ) )  C_  z  /\  R  C_  z  /\  (
z  o.  z ) 
C_  z ) }  =/=  (/)  <->  |^| { z  |  ( (  _I  |`  ( dom  R  u.  ran  R
) )  C_  z  /\  R  C_  z  /\  ( z  o.  z
)  C_  z ) }  e.  _V )
4139, 40sylib 196 . . . 4  |-  ( ph  ->  |^| { z  |  ( (  _I  |`  ( dom  R  u.  ran  R
) )  C_  z  /\  R  C_  z  /\  ( z  o.  z
)  C_  z ) }  e.  _V )
421, 12, 13, 41fvmptd 5953 . . 3  |-  ( ph  ->  ( ( x  e. 
_V  |->  |^| { z  |  ( (  _I  |`  ( dom  x  u.  ran  x
) )  C_  z  /\  x  C_  z  /\  ( z  o.  z
)  C_  z ) } ) `  R
)  =  |^| { z  |  ( (  _I  |`  ( dom  R  u.  ran  R ) )  C_  z  /\  R  C_  z  /\  ( z  o.  z
)  C_  z ) } )
43 intss1 4297 . . . . 5  |-  ( ( t*rec `  R
)  e.  { z  |  ( (  _I  |`  ( dom  R  u.  ran  R ) )  C_  z  /\  R  C_  z  /\  ( z  o.  z
)  C_  z ) }  ->  |^| { z  |  ( (  _I  |`  ( dom  R  u.  ran  R
) )  C_  z  /\  R  C_  z  /\  ( z  o.  z
)  C_  z ) }  C_  ( t*rec
`  R ) )
4437, 43syl 16 . . . 4  |-  ( ph  ->  |^| { z  |  ( (  _I  |`  ( dom  R  u.  ran  R
) )  C_  z  /\  R  C_  z  /\  ( z  o.  z
)  C_  z ) }  C_  ( t*rec
`  R ) )
45 vex 3116 . . . . . . . 8  |-  s  e. 
_V
46 sseq2 3526 . . . . . . . . 9  |-  ( z  =  s  ->  (
(  _I  |`  ( dom  R  u.  ran  R
) )  C_  z  <->  (  _I  |`  ( dom  R  u.  ran  R ) )  C_  s )
)
47 sseq2 3526 . . . . . . . . 9  |-  ( z  =  s  ->  ( R  C_  z  <->  R  C_  s
) )
48 id 22 . . . . . . . . . . 11  |-  ( z  =  s  ->  z  =  s )
4948, 48coeq12d 5165 . . . . . . . . . 10  |-  ( z  =  s  ->  (
z  o.  z )  =  ( s  o.  s ) )
5049, 48sseq12d 3533 . . . . . . . . 9  |-  ( z  =  s  ->  (
( z  o.  z
)  C_  z  <->  ( s  o.  s )  C_  s
) )
5146, 47, 503anbi123d 1299 . . . . . . . 8  |-  ( z  =  s  ->  (
( (  _I  |`  ( dom  R  u.  ran  R
) )  C_  z  /\  R  C_  z  /\  ( z  o.  z
)  C_  z )  <->  ( (  _I  |`  ( dom  R  u.  ran  R
) )  C_  s  /\  R  C_  s  /\  ( s  o.  s
)  C_  s )
) )
5245, 51elab 3250 . . . . . . 7  |-  ( s  e.  { z  |  ( (  _I  |`  ( dom  R  u.  ran  R
) )  C_  z  /\  R  C_  z  /\  ( z  o.  z
)  C_  z ) } 
<->  ( (  _I  |`  ( dom  R  u.  ran  R
) )  C_  s  /\  R  C_  s  /\  ( s  o.  s
)  C_  s )
)
5314, 13rtrclreclem.min 28545 . . . . . . . 8  |-  ( ph  ->  A. s ( ( (  _I  |`  ( dom  R  u.  ran  R
) )  C_  s  /\  R  C_  s  /\  ( s  o.  s
)  C_  s )  ->  ( t*rec `  R )  C_  s
) )
545319.21bi 1818 . . . . . . 7  |-  ( ph  ->  ( ( (  _I  |`  ( dom  R  u.  ran  R ) )  C_  s  /\  R  C_  s  /\  ( s  o.  s
)  C_  s )  ->  ( t*rec `  R )  C_  s
) )
5552, 54syl5bi 217 . . . . . 6  |-  ( ph  ->  ( s  e.  {
z  |  ( (  _I  |`  ( dom  R  u.  ran  R ) )  C_  z  /\  R  C_  z  /\  (
z  o.  z ) 
C_  z ) }  ->  ( t*rec
`  R )  C_  s ) )
5655ralrimiv 2876 . . . . 5  |-  ( ph  ->  A. s  e.  {
z  |  ( (  _I  |`  ( dom  R  u.  ran  R ) )  C_  z  /\  R  C_  z  /\  (
z  o.  z ) 
C_  z ) }  ( t*rec `  R )  C_  s
)
57 ssint 4298 . . . . 5  |-  ( ( t*rec `  R
)  C_  |^| { z  |  ( (  _I  |`  ( dom  R  u.  ran  R ) )  C_  z  /\  R  C_  z  /\  ( z  o.  z
)  C_  z ) } 
<-> 
A. s  e.  {
z  |  ( (  _I  |`  ( dom  R  u.  ran  R ) )  C_  z  /\  R  C_  z  /\  (
z  o.  z ) 
C_  z ) }  ( t*rec `  R )  C_  s
)
5856, 57sylibr 212 . . . 4  |-  ( ph  ->  ( t*rec `  R )  C_  |^| { z  |  ( (  _I  |`  ( dom  R  u.  ran  R ) )  C_  z  /\  R  C_  z  /\  ( z  o.  z
)  C_  z ) } )
5944, 58eqssd 3521 . . 3  |-  ( ph  ->  |^| { z  |  ( (  _I  |`  ( dom  R  u.  ran  R
) )  C_  z  /\  R  C_  z  /\  ( z  o.  z
)  C_  z ) }  =  ( t*rec `  R )
)
6042, 59eqtrd 2508 . 2  |-  ( ph  ->  ( ( x  e. 
_V  |->  |^| { z  |  ( (  _I  |`  ( dom  x  u.  ran  x
) )  C_  z  /\  x  C_  z  /\  ( z  o.  z
)  C_  z ) } ) `  R
)  =  ( t*rec `  R )
)
61 df-rtrcl 24863 . . 3  |-  t*  =  ( x  e.  _V  |->  |^| { z  |  ( (  _I  |`  ( dom  x  u.  ran  x
) )  C_  z  /\  x  C_  z  /\  ( z  o.  z
)  C_  z ) } )
62 fveq1 5863 . . . . 5  |-  ( t*  =  ( x  e.  _V  |->  |^| { z  |  ( (  _I  |`  ( dom  x  u. 
ran  x ) ) 
C_  z  /\  x  C_  z  /\  ( z  o.  z )  C_  z ) } )  ->  ( t* `  R )  =  ( ( x  e. 
_V  |->  |^| { z  |  ( (  _I  |`  ( dom  x  u.  ran  x
) )  C_  z  /\  x  C_  z  /\  ( z  o.  z
)  C_  z ) } ) `  R
) )
6362eqeq1d 2469 . . . 4  |-  ( t*  =  ( x  e.  _V  |->  |^| { z  |  ( (  _I  |`  ( dom  x  u. 
ran  x ) ) 
C_  z  /\  x  C_  z  /\  ( z  o.  z )  C_  z ) } )  ->  ( ( t* `  R )  =  ( t*rec
`  R )  <->  ( (
x  e.  _V  |->  |^|
{ z  |  ( (  _I  |`  ( dom  x  u.  ran  x
) )  C_  z  /\  x  C_  z  /\  ( z  o.  z
)  C_  z ) } ) `  R
)  =  ( t*rec `  R )
) )
6463imbi2d 316 . . 3  |-  ( t*  =  ( x  e.  _V  |->  |^| { z  |  ( (  _I  |`  ( dom  x  u. 
ran  x ) ) 
C_  z  /\  x  C_  z  /\  ( z  o.  z )  C_  z ) } )  ->  ( ( ph  ->  ( t* `  R )  =  ( t*rec `  R
) )  <->  ( ph  ->  ( ( x  e. 
_V  |->  |^| { z  |  ( (  _I  |`  ( dom  x  u.  ran  x
) )  C_  z  /\  x  C_  z  /\  ( z  o.  z
)  C_  z ) } ) `  R
)  =  ( t*rec `  R )
) ) )
6561, 64ax-mp 5 . 2  |-  ( (
ph  ->  ( t* `  R )  =  ( t*rec `  R ) )  <->  ( ph  ->  ( ( x  e. 
_V  |->  |^| { z  |  ( (  _I  |`  ( dom  x  u.  ran  x
) )  C_  z  /\  x  C_  z  /\  ( z  o.  z
)  C_  z ) } ) `  R
)  =  ( t*rec `  R )
) )
6660, 65mpbir 209 1  |-  ( ph  ->  ( t* `  R )  =  ( t*rec `  R
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ w3a 973   A.wal 1377    = wceq 1379    e. wcel 1767   {cab 2452    =/= wne 2662   A.wral 2814   _Vcvv 3113    u. cun 3474    C_ wss 3476   (/)c0 3785   U.cuni 4245   |^|cint 4282    |-> cmpt 4505    _I cid 4790   dom cdm 4999   ran crn 5000    |` cres 5001    o. ccom 5003   Rel wrel 5004   ` cfv 5586   t*crtcl 24861   t*reccrtrcl 28539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-cnex 9544  ax-resscn 9545  ax-1cn 9546  ax-icn 9547  ax-addcl 9548  ax-addrcl 9549  ax-mulcl 9550  ax-mulrcl 9551  ax-mulcom 9552  ax-addass 9553  ax-mulass 9554  ax-distr 9555  ax-i2m1 9556  ax-1ne0 9557  ax-1rid 9558  ax-rnegex 9559  ax-rrecex 9560  ax-cnre 9561  ax-pre-lttri 9562  ax-pre-lttrn 9563  ax-pre-ltadd 9564  ax-pre-mulgt0 9565
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-om 6679  df-2nd 6782  df-recs 7039  df-rdg 7073  df-er 7308  df-en 7514  df-dom 7515  df-sdom 7516  df-pnf 9626  df-mnf 9627  df-xr 9628  df-ltxr 9629  df-le 9630  df-sub 9803  df-neg 9804  df-nn 10533  df-n0 10792  df-z 10861  df-uz 11079  df-seq 12072  df-rtrcl 24863  df-relexp 28526  df-rtrclrec 28540
This theorem is referenced by:  rtrclind  28547
  Copyright terms: Public domain W3C validator