Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfrab3 Structured version   Unicode version

Theorem dfrab3 3727
 Description: Alternate definition of restricted class abstraction. (Contributed by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
dfrab3
Distinct variable group:   ,
Allowed substitution hint:   ()

Proof of Theorem dfrab3
StepHypRef Expression
1 df-rab 2765 . 2
2 inab 3720 . 2
3 abid2 2544 . . 3
43ineq1i 3639 . 2
51, 2, 43eqtr2i 2439 1
 Colors of variables: wff setvar class Syntax hints:   wa 369   wceq 1407   wcel 1844  cab 2389  crab 2760   cin 3415 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1641  ax-4 1654  ax-5 1727  ax-6 1773  ax-7 1816  ax-10 1863  ax-11 1868  ax-12 1880  ax-13 2028  ax-ext 2382 This theorem depends on definitions:  df-bi 187  df-or 370  df-an 371  df-tru 1410  df-ex 1636  df-nf 1640  df-sb 1766  df-clab 2390  df-cleq 2396  df-clel 2399  df-nfc 2554  df-rab 2765  df-v 3063  df-in 3423 This theorem is referenced by:  dfrab2  3728  notrab  3729  dfrab3ss  3730  dfif3  3901  dffr3  5191  dfse2  5192  tz6.26  5400  rabfi  7781  dfsup2  7938  ressmplbas2  18439  clsocv  21984  hasheuni  28545  bj-inrab3  31074  hashnzfz  36086
 Copyright terms: Public domain W3C validator