Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfrab2 Structured version   Unicode version

Theorem dfrab2 3755
 Description: Alternate definition of restricted class abstraction. (Contributed by NM, 20-Sep-2003.) (Proof shortened by BJ, 22-Apr-2019.)
Assertion
Ref Expression
dfrab2
Distinct variable group:   ,
Allowed substitution hint:   ()

Proof of Theorem dfrab2
StepHypRef Expression
1 dfrab3 3754 . 2
2 incom 3661 . 2
31, 2eqtri 2458 1
 Colors of variables: wff setvar class Syntax hints:   wceq 1437  cab 2414  crab 2786   cin 3441 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407 This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-rab 2791  df-v 3089  df-in 3449 This theorem is referenced by:  dfpred3  5409  lubdm  16176  glbdm  16189  psrbagsn  18653  ismbl  22357  eulerpartgbij  29031  orvcval4  29119  fvline2  30698  nznngen  36302
 Copyright terms: Public domain W3C validator