MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfphi2 Structured version   Unicode version

Theorem dfphi2 14316
Description: Alternate definition of the Euler  phi function. (Contributed by Mario Carneiro, 23-Feb-2014.) (Revised by Mario Carneiro, 2-May-2016.)
Assertion
Ref Expression
dfphi2  |-  ( N  e.  NN  ->  ( phi `  N )  =  ( # `  {
x  e.  ( 0..^ N )  |  ( x  gcd  N )  =  1 } ) )
Distinct variable group:    x, N

Proof of Theorem dfphi2
StepHypRef Expression
1 elnn1uz2 11183 . 2  |-  ( N  e.  NN  <->  ( N  =  1  \/  N  e.  ( ZZ>= `  2 )
) )
2 phi1 14315 . . . . 5  |-  ( phi `  1 )  =  1
3 0z 10896 . . . . . 6  |-  0  e.  ZZ
4 hashsng 12441 . . . . . 6  |-  ( 0  e.  ZZ  ->  ( # `
 { 0 } )  =  1 )
53, 4ax-mp 5 . . . . 5  |-  ( # `  { 0 } )  =  1
6 rabid2 3035 . . . . . . 7  |-  ( { 0 }  =  {
x  e.  { 0 }  |  ( x  gcd  1 )  =  1 }  <->  A. x  e.  { 0 }  (
x  gcd  1 )  =  1 )
7 elsni 4057 . . . . . . . . 9  |-  ( x  e.  { 0 }  ->  x  =  0 )
87oveq1d 6311 . . . . . . . 8  |-  ( x  e.  { 0 }  ->  ( x  gcd  1 )  =  ( 0  gcd  1 ) )
9 gcd1 14182 . . . . . . . . 9  |-  ( 0  e.  ZZ  ->  (
0  gcd  1 )  =  1 )
103, 9ax-mp 5 . . . . . . . 8  |-  ( 0  gcd  1 )  =  1
118, 10syl6eq 2514 . . . . . . 7  |-  ( x  e.  { 0 }  ->  ( x  gcd  1 )  =  1 )
126, 11mprgbir 2821 . . . . . 6  |-  { 0 }  =  { x  e.  { 0 }  | 
( x  gcd  1
)  =  1 }
1312fveq2i 5875 . . . . 5  |-  ( # `  { 0 } )  =  ( # `  {
x  e.  { 0 }  |  ( x  gcd  1 )  =  1 } )
142, 5, 133eqtr2i 2492 . . . 4  |-  ( phi `  1 )  =  ( # `  {
x  e.  { 0 }  |  ( x  gcd  1 )  =  1 } )
15 fveq2 5872 . . . 4  |-  ( N  =  1  ->  ( phi `  N )  =  ( phi `  1
) )
16 oveq2 6304 . . . . . . 7  |-  ( N  =  1  ->  (
0..^ N )  =  ( 0..^ 1 ) )
17 fzo01 11900 . . . . . . 7  |-  ( 0..^ 1 )  =  {
0 }
1816, 17syl6eq 2514 . . . . . 6  |-  ( N  =  1  ->  (
0..^ N )  =  { 0 } )
19 oveq2 6304 . . . . . . 7  |-  ( N  =  1  ->  (
x  gcd  N )  =  ( x  gcd  1 ) )
2019eqeq1d 2459 . . . . . 6  |-  ( N  =  1  ->  (
( x  gcd  N
)  =  1  <->  (
x  gcd  1 )  =  1 ) )
2118, 20rabeqbidv 3104 . . . . 5  |-  ( N  =  1  ->  { x  e.  ( 0..^ N )  |  ( x  gcd  N )  =  1 }  =  { x  e. 
{ 0 }  | 
( x  gcd  1
)  =  1 } )
2221fveq2d 5876 . . . 4  |-  ( N  =  1  ->  ( # `
 { x  e.  ( 0..^ N )  |  ( x  gcd  N )  =  1 } )  =  ( # `  { x  e.  {
0 }  |  ( x  gcd  1 )  =  1 } ) )
2314, 15, 223eqtr4a 2524 . . 3  |-  ( N  =  1  ->  ( phi `  N )  =  ( # `  {
x  e.  ( 0..^ N )  |  ( x  gcd  N )  =  1 } ) )
24 eluz2nn 11144 . . . . 5  |-  ( N  e.  ( ZZ>= `  2
)  ->  N  e.  NN )
25 phival 14309 . . . . 5  |-  ( N  e.  NN  ->  ( phi `  N )  =  ( # `  {
x  e.  ( 1 ... N )  |  ( x  gcd  N
)  =  1 } ) )
2624, 25syl 16 . . . 4  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( phi `  N )  =  (
# `  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 } ) )
27 fzossfz 11844 . . . . . . . . . . 11  |-  ( 1..^ N )  C_  (
1 ... N )
2827a1i 11 . . . . . . . . . 10  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( 1..^ N )  C_  (
1 ... N ) )
29 sseqin2 3713 . . . . . . . . . 10  |-  ( ( 1..^ N )  C_  ( 1 ... N
)  <->  ( ( 1 ... N )  i^i  ( 1..^ N ) )  =  ( 1..^ N ) )
3028, 29sylib 196 . . . . . . . . 9  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( (
1 ... N )  i^i  ( 1..^ N ) )  =  ( 1..^ N ) )
31 fzo0ss1 11854 . . . . . . . . . 10  |-  ( 1..^ N )  C_  (
0..^ N )
32 sseqin2 3713 . . . . . . . . . 10  |-  ( ( 1..^ N )  C_  ( 0..^ N )  <->  ( (
0..^ N )  i^i  ( 1..^ N ) )  =  ( 1..^ N ) )
3331, 32mpbi 208 . . . . . . . . 9  |-  ( ( 0..^ N )  i^i  ( 1..^ N ) )  =  ( 1..^ N )
3430, 33syl6eqr 2516 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( (
1 ... N )  i^i  ( 1..^ N ) )  =  ( ( 0..^ N )  i^i  ( 1..^ N ) ) )
35 rabeq 3103 . . . . . . . 8  |-  ( ( ( 1 ... N
)  i^i  ( 1..^ N ) )  =  ( ( 0..^ N )  i^i  ( 1..^ N ) )  ->  { x  e.  (
( 1 ... N
)  i^i  ( 1..^ N ) )  |  ( x  gcd  N
)  =  1 }  =  { x  e.  ( ( 0..^ N )  i^i  ( 1..^ N ) )  |  ( x  gcd  N
)  =  1 } )
3634, 35syl 16 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  2
)  ->  { x  e.  ( ( 1 ... N )  i^i  (
1..^ N ) )  |  ( x  gcd  N )  =  1 }  =  { x  e.  ( ( 0..^ N )  i^i  ( 1..^ N ) )  |  ( x  gcd  N
)  =  1 } )
37 inrab2 3778 . . . . . . 7  |-  ( { x  e.  ( 1 ... N )  |  ( x  gcd  N
)  =  1 }  i^i  ( 1..^ N ) )  =  {
x  e.  ( ( 1 ... N )  i^i  ( 1..^ N ) )  |  ( x  gcd  N )  =  1 }
38 inrab2 3778 . . . . . . 7  |-  ( { x  e.  ( 0..^ N )  |  ( x  gcd  N )  =  1 }  i^i  ( 1..^ N ) )  =  { x  e.  ( ( 0..^ N )  i^i  ( 1..^ N ) )  |  ( x  gcd  N
)  =  1 }
3936, 37, 383eqtr4g 2523 . . . . . 6  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( {
x  e.  ( 1 ... N )  |  ( x  gcd  N
)  =  1 }  i^i  ( 1..^ N ) )  =  ( { x  e.  ( 0..^ N )  |  ( x  gcd  N
)  =  1 }  i^i  ( 1..^ N ) ) )
40 phibndlem 14312 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  2
)  ->  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 }  C_  (
1 ... ( N  - 
1 ) ) )
41 eluzelz 11115 . . . . . . . . 9  |-  ( N  e.  ( ZZ>= `  2
)  ->  N  e.  ZZ )
42 fzoval 11827 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  (
1..^ N )  =  ( 1 ... ( N  -  1 ) ) )
4341, 42syl 16 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( 1..^ N )  =  ( 1 ... ( N  -  1 ) ) )
4440, 43sseqtr4d 3536 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  2
)  ->  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 }  C_  (
1..^ N ) )
45 df-ss 3485 . . . . . . 7  |-  ( { x  e.  ( 1 ... N )  |  ( x  gcd  N
)  =  1 } 
C_  ( 1..^ N )  <->  ( { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 }  i^i  (
1..^ N ) )  =  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 } )
4644, 45sylib 196 . . . . . 6  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( {
x  e.  ( 1 ... N )  |  ( x  gcd  N
)  =  1 }  i^i  ( 1..^ N ) )  =  {
x  e.  ( 1 ... N )  |  ( x  gcd  N
)  =  1 } )
47 gcd0id 14173 . . . . . . . . . . . . . . . 16  |-  ( N  e.  ZZ  ->  (
0  gcd  N )  =  ( abs `  N
) )
4841, 47syl 16 . . . . . . . . . . . . . . 15  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( 0  gcd  N )  =  ( abs `  N
) )
49 eluzelre 11116 . . . . . . . . . . . . . . . 16  |-  ( N  e.  ( ZZ>= `  2
)  ->  N  e.  RR )
50 eluzge2nn0 11145 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  ( ZZ>= `  2
)  ->  N  e.  NN0 )
5150nn0ge0d 10876 . . . . . . . . . . . . . . . 16  |-  ( N  e.  ( ZZ>= `  2
)  ->  0  <_  N )
5249, 51absidd 13266 . . . . . . . . . . . . . . 15  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( abs `  N )  =  N )
5348, 52eqtrd 2498 . . . . . . . . . . . . . 14  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( 0  gcd  N )  =  N )
54 eluz2b3 11180 . . . . . . . . . . . . . . 15  |-  ( N  e.  ( ZZ>= `  2
)  <->  ( N  e.  NN  /\  N  =/=  1 ) )
5554simprbi 464 . . . . . . . . . . . . . 14  |-  ( N  e.  ( ZZ>= `  2
)  ->  N  =/=  1 )
5653, 55eqnetrd 2750 . . . . . . . . . . . . 13  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( 0  gcd  N )  =/=  1 )
5756adantr 465 . . . . . . . . . . . 12  |-  ( ( N  e.  ( ZZ>= ` 
2 )  /\  x  e.  ( 0..^ N ) )  ->  ( 0  gcd  N )  =/=  1 )
587oveq1d 6311 . . . . . . . . . . . . . 14  |-  ( x  e.  { 0 }  ->  ( x  gcd  N )  =  ( 0  gcd  N ) )
5958, 17eleq2s 2565 . . . . . . . . . . . . 13  |-  ( x  e.  ( 0..^ 1 )  ->  ( x  gcd  N )  =  ( 0  gcd  N ) )
6059neeq1d 2734 . . . . . . . . . . . 12  |-  ( x  e.  ( 0..^ 1 )  ->  ( (
x  gcd  N )  =/=  1  <->  ( 0  gcd 
N )  =/=  1
) )
6157, 60syl5ibrcom 222 . . . . . . . . . . 11  |-  ( ( N  e.  ( ZZ>= ` 
2 )  /\  x  e.  ( 0..^ N ) )  ->  ( x  e.  ( 0..^ 1 )  ->  ( x  gcd  N )  =/=  1 ) )
6261necon2bd 2672 . . . . . . . . . 10  |-  ( ( N  e.  ( ZZ>= ` 
2 )  /\  x  e.  ( 0..^ N ) )  ->  ( (
x  gcd  N )  =  1  ->  -.  x  e.  ( 0..^ 1 ) ) )
63 simpr 461 . . . . . . . . . . . 12  |-  ( ( N  e.  ( ZZ>= ` 
2 )  /\  x  e.  ( 0..^ N ) )  ->  x  e.  ( 0..^ N ) )
64 1z 10915 . . . . . . . . . . . 12  |-  1  e.  ZZ
65 fzospliti 11856 . . . . . . . . . . . 12  |-  ( ( x  e.  ( 0..^ N )  /\  1  e.  ZZ )  ->  (
x  e.  ( 0..^ 1 )  \/  x  e.  ( 1..^ N ) ) )
6663, 64, 65sylancl 662 . . . . . . . . . . 11  |-  ( ( N  e.  ( ZZ>= ` 
2 )  /\  x  e.  ( 0..^ N ) )  ->  ( x  e.  ( 0..^ 1 )  \/  x  e.  ( 1..^ N ) ) )
6766ord 377 . . . . . . . . . 10  |-  ( ( N  e.  ( ZZ>= ` 
2 )  /\  x  e.  ( 0..^ N ) )  ->  ( -.  x  e.  ( 0..^ 1 )  ->  x  e.  ( 1..^ N ) ) )
6862, 67syld 44 . . . . . . . . 9  |-  ( ( N  e.  ( ZZ>= ` 
2 )  /\  x  e.  ( 0..^ N ) )  ->  ( (
x  gcd  N )  =  1  ->  x  e.  ( 1..^ N ) ) )
6968ralrimiva 2871 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  2
)  ->  A. x  e.  ( 0..^ N ) ( ( x  gcd  N )  =  1  ->  x  e.  ( 1..^ N ) ) )
70 rabss 3573 . . . . . . . 8  |-  ( { x  e.  ( 0..^ N )  |  ( x  gcd  N )  =  1 }  C_  ( 1..^ N )  <->  A. x  e.  ( 0..^ N ) ( ( x  gcd  N )  =  1  ->  x  e.  ( 1..^ N ) ) )
7169, 70sylibr 212 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  2
)  ->  { x  e.  ( 0..^ N )  |  ( x  gcd  N )  =  1 } 
C_  ( 1..^ N ) )
72 df-ss 3485 . . . . . . 7  |-  ( { x  e.  ( 0..^ N )  |  ( x  gcd  N )  =  1 }  C_  ( 1..^ N )  <->  ( {
x  e.  ( 0..^ N )  |  ( x  gcd  N )  =  1 }  i^i  ( 1..^ N ) )  =  { x  e.  ( 0..^ N )  |  ( x  gcd  N )  =  1 } )
7371, 72sylib 196 . . . . . 6  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( {
x  e.  ( 0..^ N )  |  ( x  gcd  N )  =  1 }  i^i  ( 1..^ N ) )  =  { x  e.  ( 0..^ N )  |  ( x  gcd  N )  =  1 } )
7439, 46, 733eqtr3d 2506 . . . . 5  |-  ( N  e.  ( ZZ>= `  2
)  ->  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 }  =  {
x  e.  ( 0..^ N )  |  ( x  gcd  N )  =  1 } )
7574fveq2d 5876 . . . 4  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( # `  {
x  e.  ( 1 ... N )  |  ( x  gcd  N
)  =  1 } )  =  ( # `  { x  e.  ( 0..^ N )  |  ( x  gcd  N
)  =  1 } ) )
7626, 75eqtrd 2498 . . 3  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( phi `  N )  =  (
# `  { x  e.  ( 0..^ N )  |  ( x  gcd  N )  =  1 } ) )
7723, 76jaoi 379 . 2  |-  ( ( N  =  1  \/  N  e.  ( ZZ>= ` 
2 ) )  -> 
( phi `  N
)  =  ( # `  { x  e.  ( 0..^ N )  |  ( x  gcd  N
)  =  1 } ) )
781, 77sylbi 195 1  |-  ( N  e.  NN  ->  ( phi `  N )  =  ( # `  {
x  e.  ( 0..^ N )  |  ( x  gcd  N )  =  1 } ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 368    /\ wa 369    = wceq 1395    e. wcel 1819    =/= wne 2652   A.wral 2807   {crab 2811    i^i cin 3470    C_ wss 3471   {csn 4032   ` cfv 5594  (class class class)co 6296   0cc0 9509   1c1 9510    - cmin 9824   NNcn 10556   2c2 10606   ZZcz 10885   ZZ>=cuz 11106   ...cfz 11697  ..^cfzo 11821   #chash 12408   abscabs 13079    gcd cgcd 14156   phicphi 14306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586  ax-pre-sup 9587
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-int 4289  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6700  df-1st 6799  df-2nd 6800  df-recs 7060  df-rdg 7094  df-1o 7148  df-oadd 7152  df-er 7329  df-en 7536  df-dom 7537  df-sdom 7538  df-fin 7539  df-sup 7919  df-card 8337  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-div 10228  df-nn 10557  df-2 10615  df-3 10616  df-n0 10817  df-z 10886  df-uz 11107  df-rp 11246  df-fz 11698  df-fzo 11822  df-seq 12111  df-exp 12170  df-hash 12409  df-cj 12944  df-re 12945  df-im 12946  df-sqrt 13080  df-abs 13081  df-dvds 13999  df-gcd 14157  df-phi 14308
This theorem is referenced by:  phimullem  14321  eulerth  14325  odngen  16724  znunithash  18730  hashgcdeq  31341
  Copyright terms: Public domain W3C validator