MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfphi2 Structured version   Unicode version

Theorem dfphi2 13845
Description: Alternate definition of the Euler  phi function. (Contributed by Mario Carneiro, 23-Feb-2014.) (Revised by Mario Carneiro, 2-May-2016.)
Assertion
Ref Expression
dfphi2  |-  ( N  e.  NN  ->  ( phi `  N )  =  ( # `  {
x  e.  ( 0..^ N )  |  ( x  gcd  N )  =  1 } ) )
Distinct variable group:    x, N

Proof of Theorem dfphi2
StepHypRef Expression
1 elnn1uz2 10927 . 2  |-  ( N  e.  NN  <->  ( N  =  1  \/  N  e.  ( ZZ>= `  2 )
) )
2 phi1 13844 . . . . 5  |-  ( phi `  1 )  =  1
3 0z 10653 . . . . . 6  |-  0  e.  ZZ
4 hashsng 12132 . . . . . 6  |-  ( 0  e.  ZZ  ->  ( # `
 { 0 } )  =  1 )
53, 4ax-mp 5 . . . . 5  |-  ( # `  { 0 } )  =  1
6 rabid2 2896 . . . . . . 7  |-  ( { 0 }  =  {
x  e.  { 0 }  |  ( x  gcd  1 )  =  1 }  <->  A. x  e.  { 0 }  (
x  gcd  1 )  =  1 )
7 elsni 3899 . . . . . . . . 9  |-  ( x  e.  { 0 }  ->  x  =  0 )
87oveq1d 6105 . . . . . . . 8  |-  ( x  e.  { 0 }  ->  ( x  gcd  1 )  =  ( 0  gcd  1 ) )
9 gcd1 13712 . . . . . . . . 9  |-  ( 0  e.  ZZ  ->  (
0  gcd  1 )  =  1 )
103, 9ax-mp 5 . . . . . . . 8  |-  ( 0  gcd  1 )  =  1
118, 10syl6eq 2489 . . . . . . 7  |-  ( x  e.  { 0 }  ->  ( x  gcd  1 )  =  1 )
126, 11mprgbir 2784 . . . . . 6  |-  { 0 }  =  { x  e.  { 0 }  | 
( x  gcd  1
)  =  1 }
1312fveq2i 5691 . . . . 5  |-  ( # `  { 0 } )  =  ( # `  {
x  e.  { 0 }  |  ( x  gcd  1 )  =  1 } )
142, 5, 133eqtr2i 2467 . . . 4  |-  ( phi `  1 )  =  ( # `  {
x  e.  { 0 }  |  ( x  gcd  1 )  =  1 } )
15 fveq2 5688 . . . 4  |-  ( N  =  1  ->  ( phi `  N )  =  ( phi `  1
) )
16 oveq2 6098 . . . . . . 7  |-  ( N  =  1  ->  (
0..^ N )  =  ( 0..^ 1 ) )
17 fzo01 11608 . . . . . . 7  |-  ( 0..^ 1 )  =  {
0 }
1816, 17syl6eq 2489 . . . . . 6  |-  ( N  =  1  ->  (
0..^ N )  =  { 0 } )
19 oveq2 6098 . . . . . . 7  |-  ( N  =  1  ->  (
x  gcd  N )  =  ( x  gcd  1 ) )
2019eqeq1d 2449 . . . . . 6  |-  ( N  =  1  ->  (
( x  gcd  N
)  =  1  <->  (
x  gcd  1 )  =  1 ) )
2118, 20rabeqbidv 2965 . . . . 5  |-  ( N  =  1  ->  { x  e.  ( 0..^ N )  |  ( x  gcd  N )  =  1 }  =  { x  e. 
{ 0 }  | 
( x  gcd  1
)  =  1 } )
2221fveq2d 5692 . . . 4  |-  ( N  =  1  ->  ( # `
 { x  e.  ( 0..^ N )  |  ( x  gcd  N )  =  1 } )  =  ( # `  { x  e.  {
0 }  |  ( x  gcd  1 )  =  1 } ) )
2314, 15, 223eqtr4a 2499 . . 3  |-  ( N  =  1  ->  ( phi `  N )  =  ( # `  {
x  e.  ( 0..^ N )  |  ( x  gcd  N )  =  1 } ) )
24 eluz2b3 10924 . . . . . 6  |-  ( N  e.  ( ZZ>= `  2
)  <->  ( N  e.  NN  /\  N  =/=  1 ) )
2524simplbi 457 . . . . 5  |-  ( N  e.  ( ZZ>= `  2
)  ->  N  e.  NN )
26 phival 13838 . . . . 5  |-  ( N  e.  NN  ->  ( phi `  N )  =  ( # `  {
x  e.  ( 1 ... N )  |  ( x  gcd  N
)  =  1 } ) )
2725, 26syl 16 . . . 4  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( phi `  N )  =  (
# `  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 } ) )
28 fzossfz 11566 . . . . . . . . . . 11  |-  ( 1..^ N )  C_  (
1 ... N )
2928a1i 11 . . . . . . . . . 10  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( 1..^ N )  C_  (
1 ... N ) )
30 sseqin2 3566 . . . . . . . . . 10  |-  ( ( 1..^ N )  C_  ( 1 ... N
)  <->  ( ( 1 ... N )  i^i  ( 1..^ N ) )  =  ( 1..^ N ) )
3129, 30sylib 196 . . . . . . . . 9  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( (
1 ... N )  i^i  ( 1..^ N ) )  =  ( 1..^ N ) )
32 1nn0 10591 . . . . . . . . . . . 12  |-  1  e.  NN0
33 nn0uz 10891 . . . . . . . . . . . 12  |-  NN0  =  ( ZZ>= `  0 )
3432, 33eleqtri 2513 . . . . . . . . . . 11  |-  1  e.  ( ZZ>= `  0 )
35 fzoss1 11572 . . . . . . . . . . 11  |-  ( 1  e.  ( ZZ>= `  0
)  ->  ( 1..^ N )  C_  (
0..^ N ) )
3634, 35ax-mp 5 . . . . . . . . . 10  |-  ( 1..^ N )  C_  (
0..^ N )
37 sseqin2 3566 . . . . . . . . . 10  |-  ( ( 1..^ N )  C_  ( 0..^ N )  <->  ( (
0..^ N )  i^i  ( 1..^ N ) )  =  ( 1..^ N ) )
3836, 37mpbi 208 . . . . . . . . 9  |-  ( ( 0..^ N )  i^i  ( 1..^ N ) )  =  ( 1..^ N )
3931, 38syl6eqr 2491 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( (
1 ... N )  i^i  ( 1..^ N ) )  =  ( ( 0..^ N )  i^i  ( 1..^ N ) ) )
40 rabeq 2964 . . . . . . . 8  |-  ( ( ( 1 ... N
)  i^i  ( 1..^ N ) )  =  ( ( 0..^ N )  i^i  ( 1..^ N ) )  ->  { x  e.  (
( 1 ... N
)  i^i  ( 1..^ N ) )  |  ( x  gcd  N
)  =  1 }  =  { x  e.  ( ( 0..^ N )  i^i  ( 1..^ N ) )  |  ( x  gcd  N
)  =  1 } )
4139, 40syl 16 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  2
)  ->  { x  e.  ( ( 1 ... N )  i^i  (
1..^ N ) )  |  ( x  gcd  N )  =  1 }  =  { x  e.  ( ( 0..^ N )  i^i  ( 1..^ N ) )  |  ( x  gcd  N
)  =  1 } )
42 inrab2 3620 . . . . . . 7  |-  ( { x  e.  ( 1 ... N )  |  ( x  gcd  N
)  =  1 }  i^i  ( 1..^ N ) )  =  {
x  e.  ( ( 1 ... N )  i^i  ( 1..^ N ) )  |  ( x  gcd  N )  =  1 }
43 inrab2 3620 . . . . . . 7  |-  ( { x  e.  ( 0..^ N )  |  ( x  gcd  N )  =  1 }  i^i  ( 1..^ N ) )  =  { x  e.  ( ( 0..^ N )  i^i  ( 1..^ N ) )  |  ( x  gcd  N
)  =  1 }
4441, 42, 433eqtr4g 2498 . . . . . 6  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( {
x  e.  ( 1 ... N )  |  ( x  gcd  N
)  =  1 }  i^i  ( 1..^ N ) )  =  ( { x  e.  ( 0..^ N )  |  ( x  gcd  N
)  =  1 }  i^i  ( 1..^ N ) ) )
45 phibndlem 13841 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  2
)  ->  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 }  C_  (
1 ... ( N  - 
1 ) ) )
46 eluzelz 10866 . . . . . . . . 9  |-  ( N  e.  ( ZZ>= `  2
)  ->  N  e.  ZZ )
47 fzoval 11550 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  (
1..^ N )  =  ( 1 ... ( N  -  1 ) ) )
4846, 47syl 16 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( 1..^ N )  =  ( 1 ... ( N  -  1 ) ) )
4945, 48sseqtr4d 3390 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  2
)  ->  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 }  C_  (
1..^ N ) )
50 df-ss 3339 . . . . . . 7  |-  ( { x  e.  ( 1 ... N )  |  ( x  gcd  N
)  =  1 } 
C_  ( 1..^ N )  <->  ( { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 }  i^i  (
1..^ N ) )  =  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 } )
5149, 50sylib 196 . . . . . 6  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( {
x  e.  ( 1 ... N )  |  ( x  gcd  N
)  =  1 }  i^i  ( 1..^ N ) )  =  {
x  e.  ( 1 ... N )  |  ( x  gcd  N
)  =  1 } )
52 gcd0id 13703 . . . . . . . . . . . . . . . 16  |-  ( N  e.  ZZ  ->  (
0  gcd  N )  =  ( abs `  N
) )
5346, 52syl 16 . . . . . . . . . . . . . . 15  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( 0  gcd  N )  =  ( abs `  N
) )
54 eluzelre 10867 . . . . . . . . . . . . . . . 16  |-  ( N  e.  ( ZZ>= `  2
)  ->  N  e.  RR )
5525nnnn0d 10632 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  ( ZZ>= `  2
)  ->  N  e.  NN0 )
5655nn0ge0d 10635 . . . . . . . . . . . . . . . 16  |-  ( N  e.  ( ZZ>= `  2
)  ->  0  <_  N )
5754, 56absidd 12905 . . . . . . . . . . . . . . 15  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( abs `  N )  =  N )
5853, 57eqtrd 2473 . . . . . . . . . . . . . 14  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( 0  gcd  N )  =  N )
5924simprbi 461 . . . . . . . . . . . . . 14  |-  ( N  e.  ( ZZ>= `  2
)  ->  N  =/=  1 )
6058, 59eqnetrd 2624 . . . . . . . . . . . . 13  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( 0  gcd  N )  =/=  1 )
6160adantr 462 . . . . . . . . . . . 12  |-  ( ( N  e.  ( ZZ>= ` 
2 )  /\  x  e.  ( 0..^ N ) )  ->  ( 0  gcd  N )  =/=  1 )
627oveq1d 6105 . . . . . . . . . . . . . 14  |-  ( x  e.  { 0 }  ->  ( x  gcd  N )  =  ( 0  gcd  N ) )
6362, 17eleq2s 2533 . . . . . . . . . . . . 13  |-  ( x  e.  ( 0..^ 1 )  ->  ( x  gcd  N )  =  ( 0  gcd  N ) )
6463neeq1d 2619 . . . . . . . . . . . 12  |-  ( x  e.  ( 0..^ 1 )  ->  ( (
x  gcd  N )  =/=  1  <->  ( 0  gcd 
N )  =/=  1
) )
6561, 64syl5ibrcom 222 . . . . . . . . . . 11  |-  ( ( N  e.  ( ZZ>= ` 
2 )  /\  x  e.  ( 0..^ N ) )  ->  ( x  e.  ( 0..^ 1 )  ->  ( x  gcd  N )  =/=  1 ) )
6665necon2bd 2658 . . . . . . . . . 10  |-  ( ( N  e.  ( ZZ>= ` 
2 )  /\  x  e.  ( 0..^ N ) )  ->  ( (
x  gcd  N )  =  1  ->  -.  x  e.  ( 0..^ 1 ) ) )
67 simpr 458 . . . . . . . . . . . 12  |-  ( ( N  e.  ( ZZ>= ` 
2 )  /\  x  e.  ( 0..^ N ) )  ->  x  e.  ( 0..^ N ) )
68 1z 10672 . . . . . . . . . . . 12  |-  1  e.  ZZ
69 fzospliti 11577 . . . . . . . . . . . 12  |-  ( ( x  e.  ( 0..^ N )  /\  1  e.  ZZ )  ->  (
x  e.  ( 0..^ 1 )  \/  x  e.  ( 1..^ N ) ) )
7067, 68, 69sylancl 657 . . . . . . . . . . 11  |-  ( ( N  e.  ( ZZ>= ` 
2 )  /\  x  e.  ( 0..^ N ) )  ->  ( x  e.  ( 0..^ 1 )  \/  x  e.  ( 1..^ N ) ) )
7170ord 377 . . . . . . . . . 10  |-  ( ( N  e.  ( ZZ>= ` 
2 )  /\  x  e.  ( 0..^ N ) )  ->  ( -.  x  e.  ( 0..^ 1 )  ->  x  e.  ( 1..^ N ) ) )
7266, 71syld 44 . . . . . . . . 9  |-  ( ( N  e.  ( ZZ>= ` 
2 )  /\  x  e.  ( 0..^ N ) )  ->  ( (
x  gcd  N )  =  1  ->  x  e.  ( 1..^ N ) ) )
7372ralrimiva 2797 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  2
)  ->  A. x  e.  ( 0..^ N ) ( ( x  gcd  N )  =  1  ->  x  e.  ( 1..^ N ) ) )
74 rabss 3426 . . . . . . . 8  |-  ( { x  e.  ( 0..^ N )  |  ( x  gcd  N )  =  1 }  C_  ( 1..^ N )  <->  A. x  e.  ( 0..^ N ) ( ( x  gcd  N )  =  1  ->  x  e.  ( 1..^ N ) ) )
7573, 74sylibr 212 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  2
)  ->  { x  e.  ( 0..^ N )  |  ( x  gcd  N )  =  1 } 
C_  ( 1..^ N ) )
76 df-ss 3339 . . . . . . 7  |-  ( { x  e.  ( 0..^ N )  |  ( x  gcd  N )  =  1 }  C_  ( 1..^ N )  <->  ( {
x  e.  ( 0..^ N )  |  ( x  gcd  N )  =  1 }  i^i  ( 1..^ N ) )  =  { x  e.  ( 0..^ N )  |  ( x  gcd  N )  =  1 } )
7775, 76sylib 196 . . . . . 6  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( {
x  e.  ( 0..^ N )  |  ( x  gcd  N )  =  1 }  i^i  ( 1..^ N ) )  =  { x  e.  ( 0..^ N )  |  ( x  gcd  N )  =  1 } )
7844, 51, 773eqtr3d 2481 . . . . 5  |-  ( N  e.  ( ZZ>= `  2
)  ->  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 }  =  {
x  e.  ( 0..^ N )  |  ( x  gcd  N )  =  1 } )
7978fveq2d 5692 . . . 4  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( # `  {
x  e.  ( 1 ... N )  |  ( x  gcd  N
)  =  1 } )  =  ( # `  { x  e.  ( 0..^ N )  |  ( x  gcd  N
)  =  1 } ) )
8027, 79eqtrd 2473 . . 3  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( phi `  N )  =  (
# `  { x  e.  ( 0..^ N )  |  ( x  gcd  N )  =  1 } ) )
8123, 80jaoi 379 . 2  |-  ( ( N  =  1  \/  N  e.  ( ZZ>= ` 
2 ) )  -> 
( phi `  N
)  =  ( # `  { x  e.  ( 0..^ N )  |  ( x  gcd  N
)  =  1 } ) )
821, 81sylbi 195 1  |-  ( N  e.  NN  ->  ( phi `  N )  =  ( # `  {
x  e.  ( 0..^ N )  |  ( x  gcd  N )  =  1 } ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 368    /\ wa 369    = wceq 1364    e. wcel 1761    =/= wne 2604   A.wral 2713   {crab 2717    i^i cin 3324    C_ wss 3325   {csn 3874   ` cfv 5415  (class class class)co 6090   0cc0 9278   1c1 9279    - cmin 9591   NNcn 10318   2c2 10367   NN0cn0 10575   ZZcz 10642   ZZ>=cuz 10857   ...cfz 11433  ..^cfzo 11544   #chash 12099   abscabs 12719    gcd cgcd 13686   phicphi 13835
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-cnex 9334  ax-resscn 9335  ax-1cn 9336  ax-icn 9337  ax-addcl 9338  ax-addrcl 9339  ax-mulcl 9340  ax-mulrcl 9341  ax-mulcom 9342  ax-addass 9343  ax-mulass 9344  ax-distr 9345  ax-i2m1 9346  ax-1ne0 9347  ax-1rid 9348  ax-rnegex 9349  ax-rrecex 9350  ax-cnre 9351  ax-pre-lttri 9352  ax-pre-lttrn 9353  ax-pre-ltadd 9354  ax-pre-mulgt0 9355  ax-pre-sup 9356
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2263  df-mo 2264  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-int 4126  df-iun 4170  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-om 6476  df-1st 6576  df-2nd 6577  df-recs 6828  df-rdg 6862  df-1o 6916  df-oadd 6920  df-er 7097  df-en 7307  df-dom 7308  df-sdom 7309  df-fin 7310  df-sup 7687  df-card 8105  df-pnf 9416  df-mnf 9417  df-xr 9418  df-ltxr 9419  df-le 9420  df-sub 9593  df-neg 9594  df-div 9990  df-nn 10319  df-2 10376  df-3 10377  df-n0 10576  df-z 10643  df-uz 10858  df-rp 10988  df-fz 11434  df-fzo 11545  df-seq 11803  df-exp 11862  df-hash 12100  df-cj 12584  df-re 12585  df-im 12586  df-sqr 12720  df-abs 12721  df-dvds 13532  df-gcd 13687  df-phi 13837
This theorem is referenced by:  phimullem  13850  eulerth  13854  odngen  16069  znunithash  17897  hashgcdeq  29475
  Copyright terms: Public domain W3C validator