Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dford3lem1 Structured version   Unicode version

Theorem dford3lem1 35294
Description: Lemma for dford3 35296. (Contributed by Stefan O'Rear, 28-Oct-2014.)
Assertion
Ref Expression
dford3lem1  |-  ( ( Tr  N  /\  A. y  e.  N  Tr  y )  ->  A. b  e.  N  ( Tr  b  /\  A. y  e.  b  Tr  y ) )
Distinct variable group:    y, b, N

Proof of Theorem dford3lem1
StepHypRef Expression
1 treq 4492 . . . . 5  |-  ( y  =  b  ->  ( Tr  y  <->  Tr  b )
)
21cbvralv 3031 . . . 4  |-  ( A. y  e.  N  Tr  y 
<-> 
A. b  e.  N  Tr  b )
32biimpi 194 . . 3  |-  ( A. y  e.  N  Tr  y  ->  A. b  e.  N  Tr  b )
43adantl 464 . 2  |-  ( ( Tr  N  /\  A. y  e.  N  Tr  y )  ->  A. b  e.  N  Tr  b
)
5 trss 4495 . . . . . 6  |-  ( Tr  N  ->  ( b  e.  N  ->  b  C_  N ) )
6 ssralv 3500 . . . . . 6  |-  ( b 
C_  N  ->  ( A. y  e.  N  Tr  y  ->  A. y  e.  b  Tr  y
) )
75, 6syl6 31 . . . . 5  |-  ( Tr  N  ->  ( b  e.  N  ->  ( A. y  e.  N  Tr  y  ->  A. y  e.  b  Tr  y ) ) )
87com23 78 . . . 4  |-  ( Tr  N  ->  ( A. y  e.  N  Tr  y  ->  ( b  e.  N  ->  A. y  e.  b  Tr  y
) ) )
98imp 427 . . 3  |-  ( ( Tr  N  /\  A. y  e.  N  Tr  y )  ->  (
b  e.  N  ->  A. y  e.  b  Tr  y ) )
109ralrimiv 2813 . 2  |-  ( ( Tr  N  /\  A. y  e.  N  Tr  y )  ->  A. b  e.  N  A. y  e.  b  Tr  y
)
11 r19.26 2931 . 2  |-  ( A. b  e.  N  ( Tr  b  /\  A. y  e.  b  Tr  y
)  <->  ( A. b  e.  N  Tr  b  /\  A. b  e.  N  A. y  e.  b  Tr  y ) )
124, 10, 11sylanbrc 662 1  |-  ( ( Tr  N  /\  A. y  e.  N  Tr  y )  ->  A. b  e.  N  ( Tr  b  /\  A. y  e.  b  Tr  y ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    e. wcel 1840   A.wral 2751    C_ wss 3411   Tr wtr 4486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1637  ax-4 1650  ax-5 1723  ax-6 1769  ax-7 1812  ax-10 1859  ax-11 1864  ax-12 1876  ax-13 2024  ax-ext 2378
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-tru 1406  df-ex 1632  df-nf 1636  df-sb 1762  df-clab 2386  df-cleq 2392  df-clel 2395  df-nfc 2550  df-ral 2756  df-rex 2757  df-v 3058  df-in 3418  df-ss 3425  df-uni 4189  df-tr 4487
This theorem is referenced by:  dford3lem2  35295  dford3  35296
  Copyright terms: Public domain W3C validator