MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dford2 Structured version   Visualization version   Unicode version

Theorem dford2 8125
Description: Assuming ax-reg 8107, an ordinal is a transitive class on which inclusion satisfies trichotomy. (Contributed by Scott Fenton, 27-Oct-2010.)
Assertion
Ref Expression
dford2  |-  ( Ord 
A  <->  ( Tr  A  /\  A. x  e.  A  A. y  e.  A  ( x  e.  y  \/  x  =  y  \/  y  e.  x
) ) )
Distinct variable group:    x, y, A

Proof of Theorem dford2
StepHypRef Expression
1 df-ord 5426 . 2  |-  ( Ord 
A  <->  ( Tr  A  /\  _E  We  A ) )
2 zfregfr 8117 . . . . 5  |-  _E  Fr  A
3 dfwe2 6608 . . . . 5  |-  (  _E  We  A  <->  (  _E  Fr  A  /\  A. x  e.  A  A. y  e.  A  ( x  _E  y  \/  x  =  y  \/  y  _E  x ) ) )
42, 3mpbiran 929 . . . 4  |-  (  _E  We  A  <->  A. x  e.  A  A. y  e.  A  ( x  _E  y  \/  x  =  y  \/  y  _E  x ) )
5 epel 4748 . . . . . 6  |-  ( x  _E  y  <->  x  e.  y )
6 biid 240 . . . . . 6  |-  ( x  =  y  <->  x  =  y )
7 epel 4748 . . . . . 6  |-  ( y  _E  x  <->  y  e.  x )
85, 6, 73orbi123i 1198 . . . . 5  |-  ( ( x  _E  y  \/  x  =  y  \/  y  _E  x )  <-> 
( x  e.  y  \/  x  =  y  \/  y  e.  x
) )
982ralbii 2820 . . . 4  |-  ( A. x  e.  A  A. y  e.  A  (
x  _E  y  \/  x  =  y  \/  y  _E  x )  <->  A. x  e.  A  A. y  e.  A  ( x  e.  y  \/  x  =  y  \/  y  e.  x
) )
104, 9bitri 253 . . 3  |-  (  _E  We  A  <->  A. x  e.  A  A. y  e.  A  ( x  e.  y  \/  x  =  y  \/  y  e.  x ) )
1110anbi2i 700 . 2  |-  ( ( Tr  A  /\  _E  We  A )  <->  ( Tr  A  /\  A. x  e.  A  A. y  e.  A  ( x  e.  y  \/  x  =  y  \/  y  e.  x ) ) )
121, 11bitri 253 1  |-  ( Ord 
A  <->  ( Tr  A  /\  A. x  e.  A  A. y  e.  A  ( x  e.  y  \/  x  =  y  \/  y  e.  x
) ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 188    /\ wa 371    \/ w3o 984   A.wral 2737   class class class wbr 4402   Tr wtr 4497    _E cep 4743    Fr wfr 4790    We wwe 4792   Ord word 5422
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-8 1889  ax-9 1896  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431  ax-sep 4525  ax-nul 4534  ax-pr 4639  ax-un 6583  ax-reg 8107
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 986  df-3an 987  df-tru 1447  df-ex 1664  df-nf 1668  df-sb 1798  df-eu 2303  df-mo 2304  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2624  df-ral 2742  df-rex 2743  df-rab 2746  df-v 3047  df-sbc 3268  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-nul 3732  df-if 3882  df-sn 3969  df-pr 3971  df-tp 3973  df-op 3975  df-uni 4199  df-br 4403  df-opab 4462  df-eprel 4745  df-po 4755  df-so 4756  df-fr 4793  df-we 4795  df-ord 5426
This theorem is referenced by:  ordelordALT  36898  ordelordALTVD  37264
  Copyright terms: Public domain W3C validator