MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfoprab4f Structured version   Unicode version

Theorem dfoprab4f 6630
Description: Operation class abstraction expressed without existential quantifiers. (Unnecessary distinct variable restrictions were removed by David Abernethy, 19-Jun-2012.) (Contributed by NM, 20-Dec-2008.) (Revised by Mario Carneiro, 31-Aug-2015.)
Hypotheses
Ref Expression
dfoprab4f.x  |-  F/ x ph
dfoprab4f.y  |-  F/ y
ph
dfoprab4f.1  |-  ( w  =  <. x ,  y
>.  ->  ( ph  <->  ps )
)
Assertion
Ref Expression
dfoprab4f  |-  { <. w ,  z >.  |  ( w  e.  ( A  X.  B )  /\  ph ) }  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  ps ) }
Distinct variable groups:    x, w, y, z    w, A, x, y    w, B, x, y    ps, w
Allowed substitution hints:    ph( x, y, z, w)    ps( x, y, z)    A( z)    B( z)

Proof of Theorem dfoprab4f
Dummy variables  u  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1673 . . . . 5  |-  F/ x  w  =  <. t ,  u >.
2 dfoprab4f.x . . . . . 6  |-  F/ x ph
3 nfs1v 2142 . . . . . 6  |-  F/ x [ t  /  x ] [ u  /  y ] ps
42, 3nfbi 1867 . . . . 5  |-  F/ x
( ph  <->  [ t  /  x ] [ u  /  y ] ps )
51, 4nfim 1853 . . . 4  |-  F/ x
( w  =  <. t ,  u >.  ->  ( ph 
<->  [ t  /  x ] [ u  /  y ] ps ) )
6 opeq1 4057 . . . . . 6  |-  ( x  =  t  ->  <. x ,  u >.  =  <. t ,  u >. )
76eqeq2d 2452 . . . . 5  |-  ( x  =  t  ->  (
w  =  <. x ,  u >.  <->  w  =  <. t ,  u >. )
)
8 sbequ12 1936 . . . . . 6  |-  ( x  =  t  ->  ( [ u  /  y ] ps  <->  [ t  /  x ] [ u  /  y ] ps ) )
98bibi2d 318 . . . . 5  |-  ( x  =  t  ->  (
( ph  <->  [ u  /  y ] ps )  <->  ( ph  <->  [ t  /  x ] [ u  /  y ] ps ) ) )
107, 9imbi12d 320 . . . 4  |-  ( x  =  t  ->  (
( w  =  <. x ,  u >.  ->  ( ph 
<->  [ u  /  y ] ps ) )  <->  ( w  =  <. t ,  u >.  ->  ( ph  <->  [ t  /  x ] [ u  /  y ] ps ) ) ) )
11 nfv 1673 . . . . . 6  |-  F/ y  w  =  <. x ,  u >.
12 dfoprab4f.y . . . . . . 7  |-  F/ y
ph
13 nfs1v 2142 . . . . . . 7  |-  F/ y [ u  /  y ] ps
1412, 13nfbi 1867 . . . . . 6  |-  F/ y ( ph  <->  [ u  /  y ] ps )
1511, 14nfim 1853 . . . . 5  |-  F/ y ( w  =  <. x ,  u >.  ->  ( ph 
<->  [ u  /  y ] ps ) )
16 opeq2 4058 . . . . . . 7  |-  ( y  =  u  ->  <. x ,  y >.  =  <. x ,  u >. )
1716eqeq2d 2452 . . . . . 6  |-  ( y  =  u  ->  (
w  =  <. x ,  y >.  <->  w  =  <. x ,  u >. ) )
18 sbequ12 1936 . . . . . . 7  |-  ( y  =  u  ->  ( ps 
<->  [ u  /  y ] ps ) )
1918bibi2d 318 . . . . . 6  |-  ( y  =  u  ->  (
( ph  <->  ps )  <->  ( ph  <->  [ u  /  y ] ps ) ) )
2017, 19imbi12d 320 . . . . 5  |-  ( y  =  u  ->  (
( w  =  <. x ,  y >.  ->  ( ph 
<->  ps ) )  <->  ( w  =  <. x ,  u >.  ->  ( ph  <->  [ u  /  y ] ps ) ) ) )
21 dfoprab4f.1 . . . . 5  |-  ( w  =  <. x ,  y
>.  ->  ( ph  <->  ps )
)
2215, 20, 21chvar 1957 . . . 4  |-  ( w  =  <. x ,  u >.  ->  ( ph  <->  [ u  /  y ] ps ) )
235, 10, 22chvar 1957 . . 3  |-  ( w  =  <. t ,  u >.  ->  ( ph  <->  [ t  /  x ] [ u  /  y ] ps ) )
2423dfoprab4 6629 . 2  |-  { <. w ,  z >.  |  ( w  e.  ( A  X.  B )  /\  ph ) }  =  { <. <. t ,  u >. ,  z >.  |  ( ( t  e.  A  /\  u  e.  B
)  /\  [ t  /  x ] [ u  /  y ] ps ) }
25 nfv 1673 . . 3  |-  F/ t ( ( x  e.  A  /\  y  e.  B )  /\  ps )
26 nfv 1673 . . 3  |-  F/ u
( ( x  e.  A  /\  y  e.  B )  /\  ps )
27 nfv 1673 . . . 4  |-  F/ x
( t  e.  A  /\  u  e.  B
)
2827, 3nfan 1861 . . 3  |-  F/ x
( ( t  e.  A  /\  u  e.  B )  /\  [
t  /  x ] [ u  /  y ] ps )
29 nfv 1673 . . . 4  |-  F/ y ( t  e.  A  /\  u  e.  B
)
3013nfsb 2146 . . . 4  |-  F/ y [ t  /  x ] [ u  /  y ] ps
3129, 30nfan 1861 . . 3  |-  F/ y ( ( t  e.  A  /\  u  e.  B )  /\  [
t  /  x ] [ u  /  y ] ps )
32 eleq1 2501 . . . . 5  |-  ( x  =  t  ->  (
x  e.  A  <->  t  e.  A ) )
33 eleq1 2501 . . . . 5  |-  ( y  =  u  ->  (
y  e.  B  <->  u  e.  B ) )
3432, 33bi2anan9 868 . . . 4  |-  ( ( x  =  t  /\  y  =  u )  ->  ( ( x  e.  A  /\  y  e.  B )  <->  ( t  e.  A  /\  u  e.  B ) ) )
3518, 8sylan9bbr 700 . . . 4  |-  ( ( x  =  t  /\  y  =  u )  ->  ( ps  <->  [ t  /  x ] [ u  /  y ] ps ) )
3634, 35anbi12d 710 . . 3  |-  ( ( x  =  t  /\  y  =  u )  ->  ( ( ( x  e.  A  /\  y  e.  B )  /\  ps ) 
<->  ( ( t  e.  A  /\  u  e.  B )  /\  [
t  /  x ] [ u  /  y ] ps ) ) )
3725, 26, 28, 31, 36cbvoprab12 6158 . 2  |-  { <. <.
x ,  y >. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B
)  /\  ps ) }  =  { <. <. t ,  u >. ,  z >.  |  ( ( t  e.  A  /\  u  e.  B )  /\  [
t  /  x ] [ u  /  y ] ps ) }
3824, 37eqtr4i 2464 1  |-  { <. w ,  z >.  |  ( w  e.  ( A  X.  B )  /\  ph ) }  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  ps ) }
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369   F/wnf 1589   [wsb 1700    e. wcel 1756   <.cop 3881   {copab 4347    X. cxp 4836   {coprab 6090
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2422  ax-sep 4411  ax-nul 4419  ax-pow 4468  ax-pr 4529  ax-un 6370
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-ral 2718  df-rex 2719  df-rab 2722  df-v 2972  df-sbc 3185  df-dif 3329  df-un 3331  df-in 3333  df-ss 3340  df-nul 3636  df-if 3790  df-sn 3876  df-pr 3878  df-op 3882  df-uni 4090  df-br 4291  df-opab 4349  df-mpt 4350  df-id 4634  df-xp 4844  df-rel 4845  df-cnv 4846  df-co 4847  df-dm 4848  df-rn 4849  df-iota 5379  df-fun 5418  df-fv 5424  df-oprab 6093  df-1st 6575  df-2nd 6576
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator