MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfopab2 Structured version   Visualization version   Unicode version

Theorem dfopab2 6866
Description: A way to define an ordered-pair class abstraction without using existential quantifiers. (Contributed by NM, 18-Aug-2006.) (Revised by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
dfopab2  |-  { <. x ,  y >.  |  ph }  =  { z  e.  ( _V  X.  _V )  |  [. ( 1st `  z )  /  x ]. [. ( 2nd `  z
)  /  y ]. ph }
Distinct variable groups:    ph, z    x, y, z
Allowed substitution hints:    ph( x, y)

Proof of Theorem dfopab2
StepHypRef Expression
1 nfsbc1v 3275 . . . . 5  |-  F/ x [. ( 1st `  z
)  /  x ]. [. ( 2nd `  z
)  /  y ]. ph
2119.41 2070 . . . 4  |-  ( E. x ( E. y 
z  =  <. x ,  y >.  /\  [. ( 1st `  z )  /  x ]. [. ( 2nd `  z )  /  y ]. ph )  <->  ( E. x E. y  z  = 
<. x ,  y >.  /\  [. ( 1st `  z
)  /  x ]. [. ( 2nd `  z
)  /  y ]. ph ) )
3 sbcopeq1a 6864 . . . . . . . 8  |-  ( z  =  <. x ,  y
>.  ->  ( [. ( 1st `  z )  /  x ]. [. ( 2nd `  z )  /  y ]. ph  <->  ph ) )
43pm5.32i 649 . . . . . . 7  |-  ( ( z  =  <. x ,  y >.  /\  [. ( 1st `  z )  /  x ]. [. ( 2nd `  z )  /  y ]. ph )  <->  ( z  =  <. x ,  y
>.  /\  ph ) )
54exbii 1726 . . . . . 6  |-  ( E. y ( z  = 
<. x ,  y >.  /\  [. ( 1st `  z
)  /  x ]. [. ( 2nd `  z
)  /  y ]. ph )  <->  E. y ( z  =  <. x ,  y
>.  /\  ph ) )
6 nfcv 2612 . . . . . . . 8  |-  F/_ y
( 1st `  z
)
7 nfsbc1v 3275 . . . . . . . 8  |-  F/ y
[. ( 2nd `  z
)  /  y ]. ph
86, 7nfsbc 3277 . . . . . . 7  |-  F/ y
[. ( 1st `  z
)  /  x ]. [. ( 2nd `  z
)  /  y ]. ph
9819.41 2070 . . . . . 6  |-  ( E. y ( z  = 
<. x ,  y >.  /\  [. ( 1st `  z
)  /  x ]. [. ( 2nd `  z
)  /  y ]. ph )  <->  ( E. y 
z  =  <. x ,  y >.  /\  [. ( 1st `  z )  /  x ]. [. ( 2nd `  z )  /  y ]. ph ) )
105, 9bitr3i 259 . . . . 5  |-  ( E. y ( z  = 
<. x ,  y >.  /\  ph )  <->  ( E. y  z  =  <. x ,  y >.  /\  [. ( 1st `  z )  /  x ]. [. ( 2nd `  z )  /  y ]. ph ) )
1110exbii 1726 . . . 4  |-  ( E. x E. y ( z  =  <. x ,  y >.  /\  ph ) 
<->  E. x ( E. y  z  =  <. x ,  y >.  /\  [. ( 1st `  z )  /  x ]. [. ( 2nd `  z )  /  y ]. ph ) )
12 elvv 4898 . . . . 5  |-  ( z  e.  ( _V  X.  _V )  <->  E. x E. y 
z  =  <. x ,  y >. )
1312anbi1i 709 . . . 4  |-  ( ( z  e.  ( _V 
X.  _V )  /\  [. ( 1st `  z )  /  x ]. [. ( 2nd `  z )  /  y ]. ph )  <->  ( E. x E. y  z  = 
<. x ,  y >.  /\  [. ( 1st `  z
)  /  x ]. [. ( 2nd `  z
)  /  y ]. ph ) )
142, 11, 133bitr4i 285 . . 3  |-  ( E. x E. y ( z  =  <. x ,  y >.  /\  ph ) 
<->  ( z  e.  ( _V  X.  _V )  /\  [. ( 1st `  z
)  /  x ]. [. ( 2nd `  z
)  /  y ]. ph ) )
1514abbii 2587 . 2  |-  { z  |  E. x E. y ( z  = 
<. x ,  y >.  /\  ph ) }  =  { z  |  ( z  e.  ( _V 
X.  _V )  /\  [. ( 1st `  z )  /  x ]. [. ( 2nd `  z )  /  y ]. ph ) }
16 df-opab 4455 . 2  |-  { <. x ,  y >.  |  ph }  =  { z  |  E. x E. y
( z  =  <. x ,  y >.  /\  ph ) }
17 df-rab 2765 . 2  |-  { z  e.  ( _V  X.  _V )  |  [. ( 1st `  z )  /  x ]. [. ( 2nd `  z )  /  y ]. ph }  =  {
z  |  ( z  e.  ( _V  X.  _V )  /\  [. ( 1st `  z )  /  x ]. [. ( 2nd `  z )  /  y ]. ph ) }
1815, 16, 173eqtr4i 2503 1  |-  { <. x ,  y >.  |  ph }  =  { z  e.  ( _V  X.  _V )  |  [. ( 1st `  z )  /  x ]. [. ( 2nd `  z
)  /  y ]. ph }
Colors of variables: wff setvar class
Syntax hints:    /\ wa 376    = wceq 1452   E.wex 1671    e. wcel 1904   {cab 2457   {crab 2760   _Vcvv 3031   [.wsbc 3255   <.cop 3965   {copab 4453    X. cxp 4837   ` cfv 5589   1stc1st 6810   2ndc2nd 6811
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-ral 2761  df-rex 2762  df-rab 2765  df-v 3033  df-sbc 3256  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-nul 3723  df-if 3873  df-sn 3960  df-pr 3962  df-op 3966  df-uni 4191  df-br 4396  df-opab 4455  df-mpt 4456  df-id 4754  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-iota 5553  df-fun 5591  df-fv 5597  df-1st 6812  df-2nd 6813
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator