Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfon4 Structured version   Unicode version

Theorem dfon4 29470
Description: Another quantifier-free definition of  On. (Contributed by Scott Fenton, 4-May-2014.)
Assertion
Ref Expression
dfon4  |-  On  =  ( _V  \  (
( SSet  \  (  _I  u.  _E  ) )
" Trans ) )

Proof of Theorem dfon4
StepHypRef Expression
1 dfon3 29469 . 2  |-  On  =  ( _V  \  ran  (
( SSet  i^i  ( Trans  X.  _V ) ) 
\  (  _I  u.  _E  ) ) )
2 df-ima 5018 . . . 4  |-  ( (
SSet  \  (  _I  u.  _E  ) ) " Trans )  =  ran  ( (
SSet  \  (  _I  u.  _E  ) )  |`  Trans )
3 df-res 5017 . . . . . 6  |-  ( (
SSet  \  (  _I  u.  _E  ) )  |`  Trans )  =  ( ( SSet  \  (  _I  u.  _E  ) )  i^i  ( Trans  X.  _V ) )
4 indif1 3747 . . . . . 6  |-  ( (
SSet  \  (  _I  u.  _E  ) )  i^i  ( Trans  X.  _V ) )  =  ( ( SSet 
i^i  ( Trans  X.  _V ) )  \  (  _I  u.  _E  ) )
53, 4eqtri 2496 . . . . 5  |-  ( (
SSet  \  (  _I  u.  _E  ) )  |`  Trans )  =  ( ( SSet  i^i  ( Trans  X.  _V )
)  \  (  _I  u.  _E  ) )
65rneqi 5235 . . . 4  |-  ran  (
( SSet  \  (  _I  u.  _E  ) )  |`  Trans )  =  ran  ( ( SSet  i^i  ( Trans  X.  _V )
)  \  (  _I  u.  _E  ) )
72, 6eqtri 2496 . . 3  |-  ( (
SSet  \  (  _I  u.  _E  ) ) " Trans )  =  ran  ( (
SSet  i^i  ( Trans  X.  _V ) )  \  (  _I  u.  _E  ) )
87difeq2i 3624 . 2  |-  ( _V 
\  ( ( SSet  \  (  _I  u.  _E  ) ) " Trans ) )  =  ( _V 
\  ran  ( ( SSet  i^i  ( Trans  X.  _V ) )  \  (  _I  u.  _E  ) ) )
91, 8eqtr4i 2499 1  |-  On  =  ( _V  \  (
( SSet  \  (  _I  u.  _E  ) )
" Trans ) )
Colors of variables: wff setvar class
Syntax hints:    = wceq 1379   _Vcvv 3118    \ cdif 3478    u. cun 3479    i^i cin 3480    _E cep 4795    _I cid 4796   Oncon0 4884    X. cxp 5003   ran crn 5006    |` cres 5007   "cima 5008   SSetcsset 29408   Transctrans 29409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2822  df-rex 2823  df-rab 2826  df-v 3120  df-sbc 3337  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-tp 4038  df-op 4040  df-uni 4252  df-int 4289  df-iun 4333  df-br 4454  df-opab 4512  df-mpt 4513  df-tr 4547  df-eprel 4797  df-id 4801  df-po 4806  df-so 4807  df-fr 4844  df-we 4846  df-ord 4887  df-on 4888  df-suc 4890  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-fo 5600  df-fv 5602  df-1st 6795  df-2nd 6796  df-txp 29430  df-sset 29432  df-trans 29433
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator