Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfon2 Structured version   Unicode version

Theorem dfon2 27617
Description:  On consists of all sets that contain all its transitive proper subsets. This definition comes from J. R. Isbell, "A Definition of Ordinal Numbers," American Mathematical Monthly, vol 67 (1960), pp. 51-52. (Contributed by Scott Fenton, 20-Feb-2011.)
Assertion
Ref Expression
dfon2  |-  On  =  { x  |  A. y ( ( y 
C.  x  /\  Tr  y )  ->  y  e.  x ) }
Distinct variable group:    x, y

Proof of Theorem dfon2
Dummy variables  z  w  t  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-on 4735 . 2  |-  On  =  { x  |  Ord  x }
2 tz7.7 4757 . . . . . . . . 9  |-  ( ( Ord  x  /\  Tr  y )  ->  (
y  e.  x  <->  ( y  C_  x  /\  y  =/=  x ) ) )
3 df-pss 3356 . . . . . . . . 9  |-  ( y 
C.  x  <->  ( y  C_  x  /\  y  =/=  x ) )
42, 3syl6bbr 263 . . . . . . . 8  |-  ( ( Ord  x  /\  Tr  y )  ->  (
y  e.  x  <->  y  C.  x
) )
54exbiri 622 . . . . . . 7  |-  ( Ord  x  ->  ( Tr  y  ->  ( y  C.  x  ->  y  e.  x
) ) )
65com23 78 . . . . . 6  |-  ( Ord  x  ->  ( y  C.  x  ->  ( Tr  y  ->  y  e.  x
) ) )
76impd 431 . . . . 5  |-  ( Ord  x  ->  ( (
y  C.  x  /\  Tr  y )  ->  y  e.  x ) )
87alrimiv 1685 . . . 4  |-  ( Ord  x  ->  A. y
( ( y  C.  x  /\  Tr  y )  ->  y  e.  x
) )
9 vex 2987 . . . . . . 7  |-  x  e. 
_V
10 dfon2lem3 27610 . . . . . . 7  |-  ( x  e.  _V  ->  ( A. y ( ( y 
C.  x  /\  Tr  y )  ->  y  e.  x )  ->  ( Tr  x  /\  A. z  e.  x  -.  z  e.  z ) ) )
119, 10ax-mp 5 . . . . . 6  |-  ( A. y ( ( y 
C.  x  /\  Tr  y )  ->  y  e.  x )  ->  ( Tr  x  /\  A. z  e.  x  -.  z  e.  z ) )
1211simpld 459 . . . . 5  |-  ( A. y ( ( y 
C.  x  /\  Tr  y )  ->  y  e.  x )  ->  Tr  x )
139dfon2lem7 27614 . . . . . . . 8  |-  ( A. y ( ( y 
C.  x  /\  Tr  y )  ->  y  e.  x )  ->  (
t  e.  x  ->  A. u ( ( u 
C.  t  /\  Tr  u )  ->  u  e.  t ) ) )
1413ralrimiv 2810 . . . . . . 7  |-  ( A. y ( ( y 
C.  x  /\  Tr  y )  ->  y  e.  x )  ->  A. t  e.  x  A. u
( ( u  C.  t  /\  Tr  u )  ->  u  e.  t ) )
15 dfon2lem9 27616 . . . . . . . 8  |-  ( A. t  e.  x  A. u ( ( u 
C.  t  /\  Tr  u )  ->  u  e.  t )  ->  _E  Fr  x )
16 psseq2 3456 . . . . . . . . . . . . . . . 16  |-  ( t  =  z  ->  (
u  C.  t  <->  u  C.  z
) )
1716anbi1d 704 . . . . . . . . . . . . . . 15  |-  ( t  =  z  ->  (
( u  C.  t  /\  Tr  u )  <->  ( u  C.  z  /\  Tr  u
) ) )
18 elequ2 1761 . . . . . . . . . . . . . . 15  |-  ( t  =  z  ->  (
u  e.  t  <->  u  e.  z ) )
1917, 18imbi12d 320 . . . . . . . . . . . . . 14  |-  ( t  =  z  ->  (
( ( u  C.  t  /\  Tr  u )  ->  u  e.  t )  <->  ( ( u 
C.  z  /\  Tr  u )  ->  u  e.  z ) ) )
2019albidv 1679 . . . . . . . . . . . . 13  |-  ( t  =  z  ->  ( A. u ( ( u 
C.  t  /\  Tr  u )  ->  u  e.  t )  <->  A. u
( ( u  C.  z  /\  Tr  u )  ->  u  e.  z ) ) )
21 psseq1 3455 . . . . . . . . . . . . . . . 16  |-  ( u  =  v  ->  (
u  C.  z  <->  v  C.  z
) )
22 treq 4403 . . . . . . . . . . . . . . . 16  |-  ( u  =  v  ->  ( Tr  u  <->  Tr  v )
)
2321, 22anbi12d 710 . . . . . . . . . . . . . . 15  |-  ( u  =  v  ->  (
( u  C.  z  /\  Tr  u )  <->  ( v  C.  z  /\  Tr  v
) ) )
24 elequ1 1759 . . . . . . . . . . . . . . 15  |-  ( u  =  v  ->  (
u  e.  z  <->  v  e.  z ) )
2523, 24imbi12d 320 . . . . . . . . . . . . . 14  |-  ( u  =  v  ->  (
( ( u  C.  z  /\  Tr  u )  ->  u  e.  z )  <->  ( ( v 
C.  z  /\  Tr  v )  ->  v  e.  z ) ) )
2625cbvalv 1971 . . . . . . . . . . . . 13  |-  ( A. u ( ( u 
C.  z  /\  Tr  u )  ->  u  e.  z )  <->  A. v
( ( v  C.  z  /\  Tr  v )  ->  v  e.  z ) )
2720, 26syl6bb 261 . . . . . . . . . . . 12  |-  ( t  =  z  ->  ( A. u ( ( u 
C.  t  /\  Tr  u )  ->  u  e.  t )  <->  A. v
( ( v  C.  z  /\  Tr  v )  ->  v  e.  z ) ) )
2827rspccv 3082 . . . . . . . . . . 11  |-  ( A. t  e.  x  A. u ( ( u 
C.  t  /\  Tr  u )  ->  u  e.  t )  ->  (
z  e.  x  ->  A. v ( ( v 
C.  z  /\  Tr  v )  ->  v  e.  z ) ) )
29 psseq2 3456 . . . . . . . . . . . . . . . 16  |-  ( t  =  w  ->  (
u  C.  t  <->  u  C.  w
) )
3029anbi1d 704 . . . . . . . . . . . . . . 15  |-  ( t  =  w  ->  (
( u  C.  t  /\  Tr  u )  <->  ( u  C.  w  /\  Tr  u
) ) )
31 elequ2 1761 . . . . . . . . . . . . . . 15  |-  ( t  =  w  ->  (
u  e.  t  <->  u  e.  w ) )
3230, 31imbi12d 320 . . . . . . . . . . . . . 14  |-  ( t  =  w  ->  (
( ( u  C.  t  /\  Tr  u )  ->  u  e.  t )  <->  ( ( u 
C.  w  /\  Tr  u )  ->  u  e.  w ) ) )
3332albidv 1679 . . . . . . . . . . . . 13  |-  ( t  =  w  ->  ( A. u ( ( u 
C.  t  /\  Tr  u )  ->  u  e.  t )  <->  A. u
( ( u  C.  w  /\  Tr  u )  ->  u  e.  w
) ) )
34 psseq1 3455 . . . . . . . . . . . . . . . 16  |-  ( u  =  y  ->  (
u  C.  w  <->  y  C.  w
) )
35 treq 4403 . . . . . . . . . . . . . . . 16  |-  ( u  =  y  ->  ( Tr  u  <->  Tr  y )
)
3634, 35anbi12d 710 . . . . . . . . . . . . . . 15  |-  ( u  =  y  ->  (
( u  C.  w  /\  Tr  u )  <->  ( y  C.  w  /\  Tr  y
) ) )
37 elequ1 1759 . . . . . . . . . . . . . . 15  |-  ( u  =  y  ->  (
u  e.  w  <->  y  e.  w ) )
3836, 37imbi12d 320 . . . . . . . . . . . . . 14  |-  ( u  =  y  ->  (
( ( u  C.  w  /\  Tr  u )  ->  u  e.  w
)  <->  ( ( y 
C.  w  /\  Tr  y )  ->  y  e.  w ) ) )
3938cbvalv 1971 . . . . . . . . . . . . 13  |-  ( A. u ( ( u 
C.  w  /\  Tr  u )  ->  u  e.  w )  <->  A. y
( ( y  C.  w  /\  Tr  y )  ->  y  e.  w
) )
4033, 39syl6bb 261 . . . . . . . . . . . 12  |-  ( t  =  w  ->  ( A. u ( ( u 
C.  t  /\  Tr  u )  ->  u  e.  t )  <->  A. y
( ( y  C.  w  /\  Tr  y )  ->  y  e.  w
) ) )
4140rspccv 3082 . . . . . . . . . . 11  |-  ( A. t  e.  x  A. u ( ( u 
C.  t  /\  Tr  u )  ->  u  e.  t )  ->  (
w  e.  x  ->  A. y ( ( y 
C.  w  /\  Tr  y )  ->  y  e.  w ) ) )
4228, 41anim12d 563 . . . . . . . . . 10  |-  ( A. t  e.  x  A. u ( ( u 
C.  t  /\  Tr  u )  ->  u  e.  t )  ->  (
( z  e.  x  /\  w  e.  x
)  ->  ( A. v ( ( v 
C.  z  /\  Tr  v )  ->  v  e.  z )  /\  A. y ( ( y 
C.  w  /\  Tr  y )  ->  y  e.  w ) ) ) )
43 vex 2987 . . . . . . . . . . 11  |-  z  e. 
_V
44 vex 2987 . . . . . . . . . . 11  |-  w  e. 
_V
4543, 44dfon2lem5 27612 . . . . . . . . . 10  |-  ( ( A. v ( ( v  C.  z  /\  Tr  v )  ->  v  e.  z )  /\  A. y ( ( y 
C.  w  /\  Tr  y )  ->  y  e.  w ) )  -> 
( z  e.  w  \/  z  =  w  \/  w  e.  z
) )
4642, 45syl6 33 . . . . . . . . 9  |-  ( A. t  e.  x  A. u ( ( u 
C.  t  /\  Tr  u )  ->  u  e.  t )  ->  (
( z  e.  x  /\  w  e.  x
)  ->  ( z  e.  w  \/  z  =  w  \/  w  e.  z ) ) )
4746ralrimivv 2819 . . . . . . . 8  |-  ( A. t  e.  x  A. u ( ( u 
C.  t  /\  Tr  u )  ->  u  e.  t )  ->  A. z  e.  x  A. w  e.  x  ( z  e.  w  \/  z  =  w  \/  w  e.  z ) )
4815, 47jca 532 . . . . . . 7  |-  ( A. t  e.  x  A. u ( ( u 
C.  t  /\  Tr  u )  ->  u  e.  t )  ->  (  _E  Fr  x  /\  A. z  e.  x  A. w  e.  x  (
z  e.  w  \/  z  =  w  \/  w  e.  z ) ) )
4914, 48syl 16 . . . . . 6  |-  ( A. y ( ( y 
C.  x  /\  Tr  y )  ->  y  e.  x )  ->  (  _E  Fr  x  /\  A. z  e.  x  A. w  e.  x  (
z  e.  w  \/  z  =  w  \/  w  e.  z ) ) )
50 dfwe2 6405 . . . . . . 7  |-  (  _E  We  x  <->  (  _E  Fr  x  /\  A. z  e.  x  A. w  e.  x  ( z  _E  w  \/  z  =  w  \/  w  _E  z ) ) )
51 epel 4647 . . . . . . . . . 10  |-  ( z  _E  w  <->  z  e.  w )
52 biid 236 . . . . . . . . . 10  |-  ( z  =  w  <->  z  =  w )
53 epel 4647 . . . . . . . . . 10  |-  ( w  _E  z  <->  w  e.  z )
5451, 52, 533orbi123i 1177 . . . . . . . . 9  |-  ( ( z  _E  w  \/  z  =  w  \/  w  _E  z )  <-> 
( z  e.  w  \/  z  =  w  \/  w  e.  z
) )
55542ralbii 2753 . . . . . . . 8  |-  ( A. z  e.  x  A. w  e.  x  (
z  _E  w  \/  z  =  w  \/  w  _E  z )  <->  A. z  e.  x  A. w  e.  x  ( z  e.  w  \/  z  =  w  \/  w  e.  z
) )
5655anbi2i 694 . . . . . . 7  |-  ( (  _E  Fr  x  /\  A. z  e.  x  A. w  e.  x  (
z  _E  w  \/  z  =  w  \/  w  _E  z ) )  <->  (  _E  Fr  x  /\  A. z  e.  x  A. w  e.  x  ( z  e.  w  \/  z  =  w  \/  w  e.  z ) ) )
5750, 56bitri 249 . . . . . 6  |-  (  _E  We  x  <->  (  _E  Fr  x  /\  A. z  e.  x  A. w  e.  x  ( z  e.  w  \/  z  =  w  \/  w  e.  z ) ) )
5849, 57sylibr 212 . . . . 5  |-  ( A. y ( ( y 
C.  x  /\  Tr  y )  ->  y  e.  x )  ->  _E  We  x )
59 df-ord 4734 . . . . 5  |-  ( Ord  x  <->  ( Tr  x  /\  _E  We  x ) )
6012, 58, 59sylanbrc 664 . . . 4  |-  ( A. y ( ( y 
C.  x  /\  Tr  y )  ->  y  e.  x )  ->  Ord  x )
618, 60impbii 188 . . 3  |-  ( Ord  x  <->  A. y ( ( y  C.  x  /\  Tr  y )  ->  y  e.  x ) )
6261abbii 2561 . 2  |-  { x  |  Ord  x }  =  { x  |  A. y ( ( y 
C.  x  /\  Tr  y )  ->  y  e.  x ) }
631, 62eqtri 2463 1  |-  On  =  { x  |  A. y ( ( y 
C.  x  /\  Tr  y )  ->  y  e.  x ) }
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    \/ w3o 964   A.wal 1367    = wceq 1369    e. wcel 1756   {cab 2429    =/= wne 2618   A.wral 2727   _Vcvv 2984    C_ wss 3340    C. wpss 3341   class class class wbr 4304   Tr wtr 4397    _E cep 4642    Fr wfr 4688    We wwe 4690   Ord word 4730   Oncon0 4731
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4425  ax-nul 4433  ax-pr 4543  ax-un 6384
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2620  df-ral 2732  df-rex 2733  df-rab 2736  df-v 2986  df-sbc 3199  df-dif 3343  df-un 3345  df-in 3347  df-ss 3354  df-pss 3356  df-nul 3650  df-if 3804  df-pw 3874  df-sn 3890  df-pr 3892  df-tp 3894  df-op 3896  df-uni 4104  df-int 4141  df-iun 4185  df-br 4305  df-opab 4363  df-tr 4398  df-eprel 4644  df-po 4653  df-so 4654  df-fr 4691  df-we 4693  df-ord 4734  df-on 4735  df-suc 4737
This theorem is referenced by:  dfon3  27935
  Copyright terms: Public domain W3C validator