MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfom4 Structured version   Visualization version   Unicode version

Theorem dfom4 8172
Description: A simplification of df-om 6712 assuming the Axiom of Infinity. (Contributed by NM, 30-May-2003.)
Assertion
Ref Expression
dfom4  |-  om  =  { x  |  A. y ( Lim  y  ->  x  e.  y ) }
Distinct variable group:    x, y

Proof of Theorem dfom4
StepHypRef Expression
1 elom3 8171 . 2  |-  ( x  e.  om  <->  A. y
( Lim  y  ->  x  e.  y ) )
21abbi2i 2586 1  |-  om  =  { x  |  A. y ( Lim  y  ->  x  e.  y ) }
Colors of variables: wff setvar class
Syntax hints:    -> wi 4   A.wal 1450    = wceq 1452   {cab 2457   Lim wlim 5431   omcom 6711
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-sep 4518  ax-nul 4527  ax-pr 4639  ax-un 6602  ax-inf2 8164
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-ral 2761  df-rex 2762  df-rab 2765  df-v 3033  df-sbc 3256  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-br 4396  df-opab 4455  df-tr 4491  df-eprel 4750  df-po 4760  df-so 4761  df-fr 4798  df-we 4800  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-om 6712
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator