MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfom3 Structured version   Unicode version

Theorem dfom3 8055
Description: The class of natural numbers omega can be defined as the smallest "inductive set," which is valid provided we assume the Axiom of Infinity. Definition 6.3 of [Eisenberg] p. 82. (Contributed by NM, 6-Aug-1994.)
Assertion
Ref Expression
dfom3  |-  om  =  |^| { x  |  (
(/)  e.  x  /\  A. y  e.  x  suc  y  e.  x ) }
Distinct variable group:    x, y

Proof of Theorem dfom3
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 0ex 4572 . . . . 5  |-  (/)  e.  _V
21elintab 4288 . . . 4  |-  ( (/)  e.  |^| { x  |  ( (/)  e.  x  /\  A. y  e.  x  suc  y  e.  x
) }  <->  A. x
( ( (/)  e.  x  /\  A. y  e.  x  suc  y  e.  x
)  ->  (/)  e.  x
) )
3 simpl 457 . . . 4  |-  ( (
(/)  e.  x  /\  A. y  e.  x  suc  y  e.  x )  -> 
(/)  e.  x )
42, 3mpgbir 1600 . . 3  |-  (/)  e.  |^| { x  |  ( (/)  e.  x  /\  A. y  e.  x  suc  y  e.  x ) }
5 suceq 4938 . . . . . . . . . 10  |-  ( y  =  z  ->  suc  y  =  suc  z )
65eleq1d 2531 . . . . . . . . 9  |-  ( y  =  z  ->  ( suc  y  e.  x  <->  suc  z  e.  x ) )
76rspccv 3206 . . . . . . . 8  |-  ( A. y  e.  x  suc  y  e.  x  ->  ( z  e.  x  ->  suc  z  e.  x
) )
87adantl 466 . . . . . . 7  |-  ( (
(/)  e.  x  /\  A. y  e.  x  suc  y  e.  x )  ->  ( z  e.  x  ->  suc  z  e.  x
) )
98a2i 13 . . . . . 6  |-  ( ( ( (/)  e.  x  /\  A. y  e.  x  suc  y  e.  x
)  ->  z  e.  x )  ->  (
( (/)  e.  x  /\  A. y  e.  x  suc  y  e.  x )  ->  suc  z  e.  x
) )
109alimi 1609 . . . . 5  |-  ( A. x ( ( (/)  e.  x  /\  A. y  e.  x  suc  y  e.  x )  ->  z  e.  x )  ->  A. x
( ( (/)  e.  x  /\  A. y  e.  x  suc  y  e.  x
)  ->  suc  z  e.  x ) )
11 vex 3111 . . . . . 6  |-  z  e. 
_V
1211elintab 4288 . . . . 5  |-  ( z  e.  |^| { x  |  ( (/)  e.  x  /\  A. y  e.  x  suc  y  e.  x
) }  <->  A. x
( ( (/)  e.  x  /\  A. y  e.  x  suc  y  e.  x
)  ->  z  e.  x ) )
1311sucex 6619 . . . . . 6  |-  suc  z  e.  _V
1413elintab 4288 . . . . 5  |-  ( suc  z  e.  |^| { x  |  ( (/)  e.  x  /\  A. y  e.  x  suc  y  e.  x
) }  <->  A. x
( ( (/)  e.  x  /\  A. y  e.  x  suc  y  e.  x
)  ->  suc  z  e.  x ) )
1510, 12, 143imtr4i 266 . . . 4  |-  ( z  e.  |^| { x  |  ( (/)  e.  x  /\  A. y  e.  x  suc  y  e.  x
) }  ->  suc  z  e.  |^| { x  |  ( (/)  e.  x  /\  A. y  e.  x  suc  y  e.  x
) } )
1615rgenw 2820 . . 3  |-  A. z  e.  om  ( z  e. 
|^| { x  |  (
(/)  e.  x  /\  A. y  e.  x  suc  y  e.  x ) }  ->  suc  z  e.  |^|
{ x  |  (
(/)  e.  x  /\  A. y  e.  x  suc  y  e.  x ) } )
17 peano5 6696 . . 3  |-  ( (
(/)  e.  |^| { x  |  ( (/)  e.  x  /\  A. y  e.  x  suc  y  e.  x
) }  /\  A. z  e.  om  (
z  e.  |^| { x  |  ( (/)  e.  x  /\  A. y  e.  x  suc  y  e.  x
) }  ->  suc  z  e.  |^| { x  |  ( (/)  e.  x  /\  A. y  e.  x  suc  y  e.  x
) } ) )  ->  om  C_  |^| { x  |  ( (/)  e.  x  /\  A. y  e.  x  suc  y  e.  x
) } )
184, 16, 17mp2an 672 . 2  |-  om  C_  |^| { x  |  ( (/)  e.  x  /\  A. y  e.  x  suc  y  e.  x
) }
19 peano1 6692 . . . 4  |-  (/)  e.  om
20 peano2 6693 . . . . 5  |-  ( y  e.  om  ->  suc  y  e.  om )
2120rgen 2819 . . . 4  |-  A. y  e.  om  suc  y  e. 
om
22 omex 8051 . . . . . 6  |-  om  e.  _V
23 eleq2 2535 . . . . . . . 8  |-  ( x  =  om  ->  ( (/) 
e.  x  <->  (/)  e.  om ) )
24 eleq2 2535 . . . . . . . . 9  |-  ( x  =  om  ->  ( suc  y  e.  x  <->  suc  y  e.  om )
)
2524raleqbi1dv 3061 . . . . . . . 8  |-  ( x  =  om  ->  ( A. y  e.  x  suc  y  e.  x  <->  A. y  e.  om  suc  y  e.  om )
)
2623, 25anbi12d 710 . . . . . . 7  |-  ( x  =  om  ->  (
( (/)  e.  x  /\  A. y  e.  x  suc  y  e.  x )  <->  (
(/)  e.  om  /\  A. y  e.  om  suc  y  e.  om ) ) )
27 eleq2 2535 . . . . . . 7  |-  ( x  =  om  ->  (
z  e.  x  <->  z  e.  om ) )
2826, 27imbi12d 320 . . . . . 6  |-  ( x  =  om  ->  (
( ( (/)  e.  x  /\  A. y  e.  x  suc  y  e.  x
)  ->  z  e.  x )  <->  ( ( (/) 
e.  om  /\  A. y  e.  om  suc  y  e. 
om )  ->  z  e.  om ) ) )
2922, 28spcv 3199 . . . . 5  |-  ( A. x ( ( (/)  e.  x  /\  A. y  e.  x  suc  y  e.  x )  ->  z  e.  x )  ->  (
( (/)  e.  om  /\  A. y  e.  om  suc  y  e.  om )  ->  z  e.  om )
)
3012, 29sylbi 195 . . . 4  |-  ( z  e.  |^| { x  |  ( (/)  e.  x  /\  A. y  e.  x  suc  y  e.  x
) }  ->  (
( (/)  e.  om  /\  A. y  e.  om  suc  y  e.  om )  ->  z  e.  om )
)
3119, 21, 30mp2ani 678 . . 3  |-  ( z  e.  |^| { x  |  ( (/)  e.  x  /\  A. y  e.  x  suc  y  e.  x
) }  ->  z  e.  om )
3231ssriv 3503 . 2  |-  |^| { x  |  ( (/)  e.  x  /\  A. y  e.  x  suc  y  e.  x
) }  C_  om
3318, 32eqssi 3515 1  |-  om  =  |^| { x  |  (
(/)  e.  x  /\  A. y  e.  x  suc  y  e.  x ) }
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369   A.wal 1372    = wceq 1374    e. wcel 1762   {cab 2447   A.wral 2809    C_ wss 3471   (/)c0 3780   |^|cint 4277   suc csuc 4875   omcom 6673
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1963  ax-ext 2440  ax-sep 4563  ax-nul 4571  ax-pr 4681  ax-un 6569  ax-inf2 8049
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2274  df-mo 2275  df-clab 2448  df-cleq 2454  df-clel 2457  df-nfc 2612  df-ne 2659  df-ral 2814  df-rex 2815  df-rab 2818  df-v 3110  df-sbc 3327  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3781  df-if 3935  df-pw 4007  df-sn 4023  df-pr 4025  df-tp 4027  df-op 4029  df-uni 4241  df-int 4278  df-br 4443  df-opab 4501  df-tr 4536  df-eprel 4786  df-po 4795  df-so 4796  df-fr 4833  df-we 4835  df-ord 4876  df-on 4877  df-lim 4878  df-suc 4879  df-om 6674
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator