MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfom3 Structured version   Unicode version

Theorem dfom3 8105
Description: The class of natural numbers omega can be defined as the smallest "inductive set," which is valid provided we assume the Axiom of Infinity. Definition 6.3 of [Eisenberg] p. 82. (Contributed by NM, 6-Aug-1994.)
Assertion
Ref Expression
dfom3  |-  om  =  |^| { x  |  (
(/)  e.  x  /\  A. y  e.  x  suc  y  e.  x ) }
Distinct variable group:    x, y

Proof of Theorem dfom3
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 0ex 4499 . . . . 5  |-  (/)  e.  _V
21elintab 4209 . . . 4  |-  ( (/)  e.  |^| { x  |  ( (/)  e.  x  /\  A. y  e.  x  suc  y  e.  x
) }  <->  A. x
( ( (/)  e.  x  /\  A. y  e.  x  suc  y  e.  x
)  ->  (/)  e.  x
) )
3 simpl 458 . . . 4  |-  ( (
(/)  e.  x  /\  A. y  e.  x  suc  y  e.  x )  -> 
(/)  e.  x )
42, 3mpgbir 1667 . . 3  |-  (/)  e.  |^| { x  |  ( (/)  e.  x  /\  A. y  e.  x  suc  y  e.  x ) }
5 suceq 5450 . . . . . . . . . 10  |-  ( y  =  z  ->  suc  y  =  suc  z )
65eleq1d 2490 . . . . . . . . 9  |-  ( y  =  z  ->  ( suc  y  e.  x  <->  suc  z  e.  x ) )
76rspccv 3122 . . . . . . . 8  |-  ( A. y  e.  x  suc  y  e.  x  ->  ( z  e.  x  ->  suc  z  e.  x
) )
87adantl 467 . . . . . . 7  |-  ( (
(/)  e.  x  /\  A. y  e.  x  suc  y  e.  x )  ->  ( z  e.  x  ->  suc  z  e.  x
) )
98a2i 14 . . . . . 6  |-  ( ( ( (/)  e.  x  /\  A. y  e.  x  suc  y  e.  x
)  ->  z  e.  x )  ->  (
( (/)  e.  x  /\  A. y  e.  x  suc  y  e.  x )  ->  suc  z  e.  x
) )
109alimi 1678 . . . . 5  |-  ( A. x ( ( (/)  e.  x  /\  A. y  e.  x  suc  y  e.  x )  ->  z  e.  x )  ->  A. x
( ( (/)  e.  x  /\  A. y  e.  x  suc  y  e.  x
)  ->  suc  z  e.  x ) )
11 vex 3025 . . . . . 6  |-  z  e. 
_V
1211elintab 4209 . . . . 5  |-  ( z  e.  |^| { x  |  ( (/)  e.  x  /\  A. y  e.  x  suc  y  e.  x
) }  <->  A. x
( ( (/)  e.  x  /\  A. y  e.  x  suc  y  e.  x
)  ->  z  e.  x ) )
1311sucex 6596 . . . . . 6  |-  suc  z  e.  _V
1413elintab 4209 . . . . 5  |-  ( suc  z  e.  |^| { x  |  ( (/)  e.  x  /\  A. y  e.  x  suc  y  e.  x
) }  <->  A. x
( ( (/)  e.  x  /\  A. y  e.  x  suc  y  e.  x
)  ->  suc  z  e.  x ) )
1510, 12, 143imtr4i 269 . . . 4  |-  ( z  e.  |^| { x  |  ( (/)  e.  x  /\  A. y  e.  x  suc  y  e.  x
) }  ->  suc  z  e.  |^| { x  |  ( (/)  e.  x  /\  A. y  e.  x  suc  y  e.  x
) } )
1615rgenw 2726 . . 3  |-  A. z  e.  om  ( z  e. 
|^| { x  |  (
(/)  e.  x  /\  A. y  e.  x  suc  y  e.  x ) }  ->  suc  z  e.  |^|
{ x  |  (
(/)  e.  x  /\  A. y  e.  x  suc  y  e.  x ) } )
17 peano5 6674 . . 3  |-  ( (
(/)  e.  |^| { x  |  ( (/)  e.  x  /\  A. y  e.  x  suc  y  e.  x
) }  /\  A. z  e.  om  (
z  e.  |^| { x  |  ( (/)  e.  x  /\  A. y  e.  x  suc  y  e.  x
) }  ->  suc  z  e.  |^| { x  |  ( (/)  e.  x  /\  A. y  e.  x  suc  y  e.  x
) } ) )  ->  om  C_  |^| { x  |  ( (/)  e.  x  /\  A. y  e.  x  suc  y  e.  x
) } )
184, 16, 17mp2an 676 . 2  |-  om  C_  |^| { x  |  ( (/)  e.  x  /\  A. y  e.  x  suc  y  e.  x
) }
19 peano1 6670 . . . 4  |-  (/)  e.  om
20 peano2 6671 . . . . 5  |-  ( y  e.  om  ->  suc  y  e.  om )
2120rgen 2724 . . . 4  |-  A. y  e.  om  suc  y  e. 
om
22 omex 8101 . . . . . 6  |-  om  e.  _V
23 eleq2 2495 . . . . . . . 8  |-  ( x  =  om  ->  ( (/) 
e.  x  <->  (/)  e.  om ) )
24 eleq2 2495 . . . . . . . . 9  |-  ( x  =  om  ->  ( suc  y  e.  x  <->  suc  y  e.  om )
)
2524raleqbi1dv 2972 . . . . . . . 8  |-  ( x  =  om  ->  ( A. y  e.  x  suc  y  e.  x  <->  A. y  e.  om  suc  y  e.  om )
)
2623, 25anbi12d 715 . . . . . . 7  |-  ( x  =  om  ->  (
( (/)  e.  x  /\  A. y  e.  x  suc  y  e.  x )  <->  (
(/)  e.  om  /\  A. y  e.  om  suc  y  e.  om ) ) )
27 eleq2 2495 . . . . . . 7  |-  ( x  =  om  ->  (
z  e.  x  <->  z  e.  om ) )
2826, 27imbi12d 321 . . . . . 6  |-  ( x  =  om  ->  (
( ( (/)  e.  x  /\  A. y  e.  x  suc  y  e.  x
)  ->  z  e.  x )  <->  ( ( (/) 
e.  om  /\  A. y  e.  om  suc  y  e. 
om )  ->  z  e.  om ) ) )
2922, 28spcv 3115 . . . . 5  |-  ( A. x ( ( (/)  e.  x  /\  A. y  e.  x  suc  y  e.  x )  ->  z  e.  x )  ->  (
( (/)  e.  om  /\  A. y  e.  om  suc  y  e.  om )  ->  z  e.  om )
)
3012, 29sylbi 198 . . . 4  |-  ( z  e.  |^| { x  |  ( (/)  e.  x  /\  A. y  e.  x  suc  y  e.  x
) }  ->  (
( (/)  e.  om  /\  A. y  e.  om  suc  y  e.  om )  ->  z  e.  om )
)
3119, 21, 30mp2ani 682 . . 3  |-  ( z  e.  |^| { x  |  ( (/)  e.  x  /\  A. y  e.  x  suc  y  e.  x
) }  ->  z  e.  om )
3231ssriv 3411 . 2  |-  |^| { x  |  ( (/)  e.  x  /\  A. y  e.  x  suc  y  e.  x
) }  C_  om
3318, 32eqssi 3423 1  |-  om  =  |^| { x  |  (
(/)  e.  x  /\  A. y  e.  x  suc  y  e.  x ) }
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 370   A.wal 1435    = wceq 1437    e. wcel 1872   {cab 2414   A.wral 2714    C_ wss 3379   (/)c0 3704   |^|cint 4198   suc csuc 5387   omcom 6650
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2063  ax-ext 2408  ax-sep 4489  ax-nul 4498  ax-pr 4603  ax-un 6541  ax-inf2 8099
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2280  df-mo 2281  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2558  df-ne 2601  df-ral 2719  df-rex 2720  df-rab 2723  df-v 3024  df-sbc 3243  df-dif 3382  df-un 3384  df-in 3386  df-ss 3393  df-pss 3395  df-nul 3705  df-if 3855  df-pw 3926  df-sn 3942  df-pr 3944  df-tp 3946  df-op 3948  df-uni 4163  df-int 4199  df-br 4367  df-opab 4426  df-tr 4462  df-eprel 4707  df-po 4717  df-so 4718  df-fr 4755  df-we 4757  df-ord 5388  df-on 5389  df-lim 5390  df-suc 5391  df-om 6651
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator