MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfoi Structured version   Unicode version

Theorem dfoi 8041
Description: Rewrite df-oi 8040 with abbreviations. (Contributed by Mario Carneiro, 24-Jun-2015.)
Hypotheses
Ref Expression
dfoi.1  |-  C  =  { w  e.  A  |  A. j  e.  ran  h  j R w }
dfoi.2  |-  G  =  ( h  e.  _V  |->  ( iota_ v  e.  C  A. u  e.  C  -.  u R v ) )
dfoi.3  |-  F  = recs ( G )
Assertion
Ref Expression
dfoi  |- OrdIso ( R ,  A )  =  if ( ( R  We  A  /\  R Se  A ) ,  ( F  |`  { x  e.  On  |  E. t  e.  A  A. z  e.  ( F " x
) z R t } ) ,  (/) )
Distinct variable groups:    h, j,
t, u, v, w, x, z, A    u, C, v    z, F    R, h, j, t, u, v, w, x, z
Allowed substitution hints:    C( x, z, w, t, h, j)    F( x, w, v, u, t, h, j)    G( x, z, w, v, u, t, h, j)

Proof of Theorem dfoi
StepHypRef Expression
1 df-oi 8040 . 2  |- OrdIso ( R ,  A )  =  if ( ( R  We  A  /\  R Se  A ) ,  (recs ( ( h  e. 
_V  |->  ( iota_ v  e. 
{ w  e.  A  |  A. j  e.  ran  h  j R w } A. u  e. 
{ w  e.  A  |  A. j  e.  ran  h  j R w }  -.  u R v ) ) )  |`  { x  e.  On  |  E. t  e.  A  A. z  e.  (recs ( ( h  e. 
_V  |->  ( iota_ v  e. 
{ w  e.  A  |  A. j  e.  ran  h  j R w } A. u  e. 
{ w  e.  A  |  A. j  e.  ran  h  j R w }  -.  u R v ) ) )
" x ) z R t } ) ,  (/) )
2 dfoi.3 . . . . 5  |-  F  = recs ( G )
3 dfoi.2 . . . . . . 7  |-  G  =  ( h  e.  _V  |->  ( iota_ v  e.  C  A. u  e.  C  -.  u R v ) )
4 dfoi.1 . . . . . . . . . 10  |-  C  =  { w  e.  A  |  A. j  e.  ran  h  j R w }
54a1i 11 . . . . . . . . 9  |-  ( h  e.  _V  ->  C  =  { w  e.  A  |  A. j  e.  ran  h  j R w } )
65raleqdv 3033 . . . . . . . . 9  |-  ( h  e.  _V  ->  ( A. u  e.  C  -.  u R v  <->  A. u  e.  { w  e.  A  |  A. j  e.  ran  h  j R w }  -.  u R v ) )
75, 6riotaeqbidv 6276 . . . . . . . 8  |-  ( h  e.  _V  ->  ( iota_ v  e.  C  A. u  e.  C  -.  u R v )  =  ( iota_ v  e.  {
w  e.  A  |  A. j  e.  ran  h  j R w } A. u  e. 
{ w  e.  A  |  A. j  e.  ran  h  j R w }  -.  u R v ) )
87mpteq2ia 4512 . . . . . . 7  |-  ( h  e.  _V  |->  ( iota_ v  e.  C  A. u  e.  C  -.  u R v ) )  =  ( h  e. 
_V  |->  ( iota_ v  e. 
{ w  e.  A  |  A. j  e.  ran  h  j R w } A. u  e. 
{ w  e.  A  |  A. j  e.  ran  h  j R w }  -.  u R v ) )
93, 8eqtri 2452 . . . . . 6  |-  G  =  ( h  e.  _V  |->  ( iota_ v  e.  {
w  e.  A  |  A. j  e.  ran  h  j R w } A. u  e. 
{ w  e.  A  |  A. j  e.  ran  h  j R w }  -.  u R v ) )
10 recseq 7109 . . . . . 6  |-  ( G  =  ( h  e. 
_V  |->  ( iota_ v  e. 
{ w  e.  A  |  A. j  e.  ran  h  j R w } A. u  e. 
{ w  e.  A  |  A. j  e.  ran  h  j R w }  -.  u R v ) )  -> recs ( G )  = recs (
( h  e.  _V  |->  ( iota_ v  e.  {
w  e.  A  |  A. j  e.  ran  h  j R w } A. u  e. 
{ w  e.  A  |  A. j  e.  ran  h  j R w }  -.  u R v ) ) ) )
119, 10ax-mp 5 . . . . 5  |- recs ( G )  = recs ( ( h  e.  _V  |->  (
iota_ v  e.  { w  e.  A  |  A. j  e.  ran  h  j R w } A. u  e.  { w  e.  A  |  A. j  e.  ran  h  j R w }  -.  u R v ) ) )
122, 11eqtri 2452 . . . 4  |-  F  = recs ( ( h  e. 
_V  |->  ( iota_ v  e. 
{ w  e.  A  |  A. j  e.  ran  h  j R w } A. u  e. 
{ w  e.  A  |  A. j  e.  ran  h  j R w }  -.  u R v ) ) )
1312imaeq1i 5190 . . . . . . . 8  |-  ( F
" x )  =  (recs ( ( h  e.  _V  |->  ( iota_ v  e.  { w  e.  A  |  A. j  e.  ran  h  j R w } A. u  e.  { w  e.  A  |  A. j  e.  ran  h  j R w }  -.  u R v ) ) )
" x )
1413raleqi 3031 . . . . . . 7  |-  ( A. z  e.  ( F " x ) z R t  <->  A. z  e.  (recs ( ( h  e. 
_V  |->  ( iota_ v  e. 
{ w  e.  A  |  A. j  e.  ran  h  j R w } A. u  e. 
{ w  e.  A  |  A. j  e.  ran  h  j R w }  -.  u R v ) ) )
" x ) z R t )
1514rexbii 2929 . . . . . 6  |-  ( E. t  e.  A  A. z  e.  ( F " x ) z R t  <->  E. t  e.  A  A. z  e.  (recs ( ( h  e. 
_V  |->  ( iota_ v  e. 
{ w  e.  A  |  A. j  e.  ran  h  j R w } A. u  e. 
{ w  e.  A  |  A. j  e.  ran  h  j R w }  -.  u R v ) ) )
" x ) z R t )
1615a1i 11 . . . . 5  |-  ( x  e.  On  ->  ( E. t  e.  A  A. z  e.  ( F " x ) z R t  <->  E. t  e.  A  A. z  e.  (recs ( ( h  e.  _V  |->  ( iota_ v  e.  { w  e.  A  |  A. j  e.  ran  h  j R w } A. u  e.  { w  e.  A  |  A. j  e.  ran  h  j R w }  -.  u R v ) ) )
" x ) z R t ) )
1716rabbiia 3073 . . . 4  |-  { x  e.  On  |  E. t  e.  A  A. z  e.  ( F " x
) z R t }  =  { x  e.  On  |  E. t  e.  A  A. z  e.  (recs ( ( h  e.  _V  |->  ( iota_ v  e.  { w  e.  A  |  A. j  e.  ran  h  j R w } A. u  e.  { w  e.  A  |  A. j  e.  ran  h  j R w }  -.  u R v ) ) )
" x ) z R t }
1812, 17reseq12i 5128 . . 3  |-  ( F  |`  { x  e.  On  |  E. t  e.  A  A. z  e.  ( F " x ) z R t } )  =  (recs ( ( h  e.  _V  |->  (
iota_ v  e.  { w  e.  A  |  A. j  e.  ran  h  j R w } A. u  e.  { w  e.  A  |  A. j  e.  ran  h  j R w }  -.  u R v ) ) )  |`  { x  e.  On  |  E. t  e.  A  A. z  e.  (recs ( ( h  e.  _V  |->  ( iota_ v  e.  { w  e.  A  |  A. j  e.  ran  h  j R w } A. u  e.  { w  e.  A  |  A. j  e.  ran  h  j R w }  -.  u R v ) ) )
" x ) z R t } )
19 ifeq1 3921 . . 3  |-  ( ( F  |`  { x  e.  On  |  E. t  e.  A  A. z  e.  ( F " x
) z R t } )  =  (recs ( ( h  e. 
_V  |->  ( iota_ v  e. 
{ w  e.  A  |  A. j  e.  ran  h  j R w } A. u  e. 
{ w  e.  A  |  A. j  e.  ran  h  j R w }  -.  u R v ) ) )  |`  { x  e.  On  |  E. t  e.  A  A. z  e.  (recs ( ( h  e. 
_V  |->  ( iota_ v  e. 
{ w  e.  A  |  A. j  e.  ran  h  j R w } A. u  e. 
{ w  e.  A  |  A. j  e.  ran  h  j R w }  -.  u R v ) ) )
" x ) z R t } )  ->  if ( ( R  We  A  /\  R Se  A ) ,  ( F  |`  { x  e.  On  |  E. t  e.  A  A. z  e.  ( F " x
) z R t } ) ,  (/) )  =  if (
( R  We  A  /\  R Se  A ) ,  (recs ( ( h  e.  _V  |->  ( iota_ v  e.  { w  e.  A  |  A. j  e.  ran  h  j R w } A. u  e.  { w  e.  A  |  A. j  e.  ran  h  j R w }  -.  u R v ) ) )  |`  { x  e.  On  |  E. t  e.  A  A. z  e.  (recs ( ( h  e. 
_V  |->  ( iota_ v  e. 
{ w  e.  A  |  A. j  e.  ran  h  j R w } A. u  e. 
{ w  e.  A  |  A. j  e.  ran  h  j R w }  -.  u R v ) ) )
" x ) z R t } ) ,  (/) ) )
2018, 19ax-mp 5 . 2  |-  if ( ( R  We  A  /\  R Se  A ) ,  ( F  |`  { x  e.  On  |  E. t  e.  A  A. z  e.  ( F " x ) z R t } ) ,  (/) )  =  if ( ( R  We  A  /\  R Se  A ) ,  (recs ( ( h  e.  _V  |->  (
iota_ v  e.  { w  e.  A  |  A. j  e.  ran  h  j R w } A. u  e.  { w  e.  A  |  A. j  e.  ran  h  j R w }  -.  u R v ) ) )  |`  { x  e.  On  |  E. t  e.  A  A. z  e.  (recs ( ( h  e.  _V  |->  ( iota_ v  e.  { w  e.  A  |  A. j  e.  ran  h  j R w } A. u  e.  { w  e.  A  |  A. j  e.  ran  h  j R w }  -.  u R v ) ) )
" x ) z R t } ) ,  (/) )
211, 20eqtr4i 2455 1  |- OrdIso ( R ,  A )  =  if ( ( R  We  A  /\  R Se  A ) ,  ( F  |`  { x  e.  On  |  E. t  e.  A  A. z  e.  ( F " x
) z R t } ) ,  (/) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    <-> wb 188    /\ wa 371    = wceq 1438    e. wcel 1873   A.wral 2776   E.wrex 2777   {crab 2780   _Vcvv 3085   (/)c0 3767   ifcif 3917   class class class wbr 4429    |-> cmpt 4488   Se wse 4816    We wwe 4817   ran crn 4860    |` cres 4861   "cima 4862   Oncon0 5448   iota_crio 6272  recscrecs 7106  OrdIsocoi 8039
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1664  ax-4 1677  ax-5 1753  ax-6 1799  ax-7 1844  ax-10 1892  ax-11 1897  ax-12 1910  ax-13 2058  ax-ext 2402
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3an 985  df-tru 1441  df-ex 1659  df-nf 1663  df-sb 1792  df-clab 2409  df-cleq 2415  df-clel 2418  df-nfc 2573  df-ral 2781  df-rex 2782  df-rab 2785  df-v 3087  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-nul 3768  df-if 3918  df-sn 4005  df-pr 4007  df-op 4011  df-uni 4226  df-br 4430  df-opab 4489  df-mpt 4490  df-xp 4865  df-cnv 4867  df-dm 4869  df-rn 4870  df-res 4871  df-ima 4872  df-pred 5405  df-iota 5571  df-fv 5615  df-riota 6273  df-wrecs 7045  df-recs 7107  df-oi 8040
This theorem is referenced by:  ordtypelem1  8048
  Copyright terms: Public domain W3C validator