MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfod2 Structured version   Unicode version

Theorem dfod2 16070
Description: An alternative definition of the order of a group element is as the cardinality of the cyclic subgroup generated by the element. (Contributed by Mario Carneiro, 14-Jan-2015.) (Revised by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
odf1.1  |-  X  =  ( Base `  G
)
odf1.2  |-  O  =  ( od `  G
)
odf1.3  |-  .x.  =  (.g
`  G )
odf1.4  |-  F  =  ( x  e.  ZZ  |->  ( x  .x.  A ) )
Assertion
Ref Expression
dfod2  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  ( O `  A
)  =  if ( ran  F  e.  Fin ,  ( # `  ran  F ) ,  0 ) )
Distinct variable groups:    x, A    x, G    x, O    x,  .x.    x, X
Allowed substitution hint:    F( x)

Proof of Theorem dfod2
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fzfid 11800 . . . . 5  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  ->  ( 0 ... ( ( O `  A )  -  1 ) )  e.  Fin )
2 odf1.1 . . . . . . . . . . . . 13  |-  X  =  ( Base `  G
)
3 odf1.3 . . . . . . . . . . . . 13  |-  .x.  =  (.g
`  G )
42, 3mulgcl 15649 . . . . . . . . . . . 12  |-  ( ( G  e.  Grp  /\  x  e.  ZZ  /\  A  e.  X )  ->  (
x  .x.  A )  e.  X )
543expa 1187 . . . . . . . . . . 11  |-  ( ( ( G  e.  Grp  /\  x  e.  ZZ )  /\  A  e.  X
)  ->  ( x  .x.  A )  e.  X
)
65an32s 802 . . . . . . . . . 10  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  x  e.  ZZ )  ->  ( x  .x.  A )  e.  X
)
76adantlr 714 . . . . . . . . 9  |-  ( ( ( ( G  e. 
Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  /\  x  e.  ZZ )  ->  (
x  .x.  A )  e.  X )
8 odf1.4 . . . . . . . . 9  |-  F  =  ( x  e.  ZZ  |->  ( x  .x.  A ) )
97, 8fmptd 5872 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  ->  F : ZZ --> X )
10 frn 5570 . . . . . . . 8  |-  ( F : ZZ --> X  ->  ran  F  C_  X )
11 fvex 5706 . . . . . . . . . 10  |-  ( Base `  G )  e.  _V
122, 11eqeltri 2513 . . . . . . . . 9  |-  X  e. 
_V
1312ssex 4441 . . . . . . . 8  |-  ( ran 
F  C_  X  ->  ran 
F  e.  _V )
149, 10, 133syl 20 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  ->  ran  F  e.  _V )
15 elfzelz 11458 . . . . . . . . . . 11  |-  ( y  e.  ( 0 ... ( ( O `  A )  -  1 ) )  ->  y  e.  ZZ )
1615adantl 466 . . . . . . . . . 10  |-  ( ( ( ( G  e. 
Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  /\  y  e.  ( 0 ... (
( O `  A
)  -  1 ) ) )  ->  y  e.  ZZ )
17 ovex 6121 . . . . . . . . . 10  |-  ( y 
.x.  A )  e. 
_V
18 oveq1 6103 . . . . . . . . . . 11  |-  ( x  =  y  ->  (
x  .x.  A )  =  ( y  .x.  A ) )
198, 18elrnmpt1s 5092 . . . . . . . . . 10  |-  ( ( y  e.  ZZ  /\  ( y  .x.  A
)  e.  _V )  ->  ( y  .x.  A
)  e.  ran  F
)
2016, 17, 19sylancl 662 . . . . . . . . 9  |-  ( ( ( ( G  e. 
Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  /\  y  e.  ( 0 ... (
( O `  A
)  -  1 ) ) )  ->  (
y  .x.  A )  e.  ran  F )
2120ralrimiva 2804 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  ->  A. y  e.  ( 0 ... ( ( O `  A )  -  1 ) ) ( y  .x.  A
)  e.  ran  F
)
22 zmodfz 11734 . . . . . . . . . . . . 13  |-  ( ( x  e.  ZZ  /\  ( O `  A )  e.  NN )  -> 
( x  mod  ( O `  A )
)  e.  ( 0 ... ( ( O `
 A )  - 
1 ) ) )
2322ancoms 453 . . . . . . . . . . . 12  |-  ( ( ( O `  A
)  e.  NN  /\  x  e.  ZZ )  ->  ( x  mod  ( O `  A )
)  e.  ( 0 ... ( ( O `
 A )  - 
1 ) ) )
2423adantll 713 . . . . . . . . . . 11  |-  ( ( ( ( G  e. 
Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  /\  x  e.  ZZ )  ->  (
x  mod  ( O `  A ) )  e.  ( 0 ... (
( O `  A
)  -  1 ) ) )
25 simpllr 758 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  /\  x  e.  ZZ )  /\  y  e.  ( 0 ... (
( O `  A
)  -  1 ) ) )  ->  ( O `  A )  e.  NN )
26 simplr 754 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  /\  x  e.  ZZ )  /\  y  e.  ( 0 ... (
( O `  A
)  -  1 ) ) )  ->  x  e.  ZZ )
2715adantl 466 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  /\  x  e.  ZZ )  /\  y  e.  ( 0 ... (
( O `  A
)  -  1 ) ) )  ->  y  e.  ZZ )
28 moddvds 13547 . . . . . . . . . . . . . 14  |-  ( ( ( O `  A
)  e.  NN  /\  x  e.  ZZ  /\  y  e.  ZZ )  ->  (
( x  mod  ( O `  A )
)  =  ( y  mod  ( O `  A ) )  <->  ( O `  A )  ||  (
x  -  y ) ) )
2925, 26, 27, 28syl3anc 1218 . . . . . . . . . . . . 13  |-  ( ( ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  /\  x  e.  ZZ )  /\  y  e.  ( 0 ... (
( O `  A
)  -  1 ) ) )  ->  (
( x  mod  ( O `  A )
)  =  ( y  mod  ( O `  A ) )  <->  ( O `  A )  ||  (
x  -  y ) ) )
3027zred 10752 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  /\  x  e.  ZZ )  /\  y  e.  ( 0 ... (
( O `  A
)  -  1 ) ) )  ->  y  e.  RR )
3125nnrpd 11031 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  /\  x  e.  ZZ )  /\  y  e.  ( 0 ... (
( O `  A
)  -  1 ) ) )  ->  ( O `  A )  e.  RR+ )
32 0z 10662 . . . . . . . . . . . . . . . . . . 19  |-  0  e.  ZZ
33 nnz 10673 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( O `  A )  e.  NN  ->  ( O `  A )  e.  ZZ )
3433adantl 466 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  ->  ( O `  A )  e.  ZZ )
3534adantr 465 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( G  e. 
Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  /\  x  e.  ZZ )  ->  ( O `  A )  e.  ZZ )
36 elfzm11 11533 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 0  e.  ZZ  /\  ( O `  A )  e.  ZZ )  -> 
( y  e.  ( 0 ... ( ( O `  A )  -  1 ) )  <-> 
( y  e.  ZZ  /\  0  <_  y  /\  y  <  ( O `  A ) ) ) )
3732, 35, 36sylancr 663 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( G  e. 
Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  /\  x  e.  ZZ )  ->  (
y  e.  ( 0 ... ( ( O `
 A )  - 
1 ) )  <->  ( y  e.  ZZ  /\  0  <_ 
y  /\  y  <  ( O `  A ) ) ) )
3837biimpa 484 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  /\  x  e.  ZZ )  /\  y  e.  ( 0 ... (
( O `  A
)  -  1 ) ) )  ->  (
y  e.  ZZ  /\  0  <_  y  /\  y  <  ( O `  A
) ) )
3938simp2d 1001 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  /\  x  e.  ZZ )  /\  y  e.  ( 0 ... (
( O `  A
)  -  1 ) ) )  ->  0  <_  y )
4038simp3d 1002 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  /\  x  e.  ZZ )  /\  y  e.  ( 0 ... (
( O `  A
)  -  1 ) ) )  ->  y  <  ( O `  A
) )
41 modid 11737 . . . . . . . . . . . . . . . 16  |-  ( ( ( y  e.  RR  /\  ( O `  A
)  e.  RR+ )  /\  ( 0  <_  y  /\  y  <  ( O `
 A ) ) )  ->  ( y  mod  ( O `  A
) )  =  y )
4230, 31, 39, 40, 41syl22anc 1219 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  /\  x  e.  ZZ )  /\  y  e.  ( 0 ... (
( O `  A
)  -  1 ) ) )  ->  (
y  mod  ( O `  A ) )  =  y )
4342eqeq2d 2454 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  /\  x  e.  ZZ )  /\  y  e.  ( 0 ... (
( O `  A
)  -  1 ) ) )  ->  (
( x  mod  ( O `  A )
)  =  ( y  mod  ( O `  A ) )  <->  ( x  mod  ( O `  A
) )  =  y ) )
44 eqcom 2445 . . . . . . . . . . . . . 14  |-  ( ( x  mod  ( O `
 A ) )  =  y  <->  y  =  ( x  mod  ( O `
 A ) ) )
4543, 44syl6bb 261 . . . . . . . . . . . . 13  |-  ( ( ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  /\  x  e.  ZZ )  /\  y  e.  ( 0 ... (
( O `  A
)  -  1 ) ) )  ->  (
( x  mod  ( O `  A )
)  =  ( y  mod  ( O `  A ) )  <->  y  =  ( x  mod  ( O `
 A ) ) ) )
46 simp-4l 765 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  /\  x  e.  ZZ )  /\  y  e.  ( 0 ... (
( O `  A
)  -  1 ) ) )  ->  G  e.  Grp )
47 simp-4r 766 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  /\  x  e.  ZZ )  /\  y  e.  ( 0 ... (
( O `  A
)  -  1 ) ) )  ->  A  e.  X )
48 odf1.2 . . . . . . . . . . . . . . 15  |-  O  =  ( od `  G
)
49 eqid 2443 . . . . . . . . . . . . . . 15  |-  ( 0g
`  G )  =  ( 0g `  G
)
502, 48, 3, 49odcong 16057 . . . . . . . . . . . . . 14  |-  ( ( G  e.  Grp  /\  A  e.  X  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  ( ( O `  A )  ||  ( x  -  y
)  <->  ( x  .x.  A )  =  ( y  .x.  A ) ) )
5146, 47, 26, 27, 50syl112anc 1222 . . . . . . . . . . . . 13  |-  ( ( ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  /\  x  e.  ZZ )  /\  y  e.  ( 0 ... (
( O `  A
)  -  1 ) ) )  ->  (
( O `  A
)  ||  ( x  -  y )  <->  ( x  .x.  A )  =  ( y  .x.  A ) ) )
5229, 45, 513bitr3rd 284 . . . . . . . . . . . 12  |-  ( ( ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  /\  x  e.  ZZ )  /\  y  e.  ( 0 ... (
( O `  A
)  -  1 ) ) )  ->  (
( x  .x.  A
)  =  ( y 
.x.  A )  <->  y  =  ( x  mod  ( O `
 A ) ) ) )
5352ralrimiva 2804 . . . . . . . . . . 11  |-  ( ( ( ( G  e. 
Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  /\  x  e.  ZZ )  ->  A. y  e.  ( 0 ... (
( O `  A
)  -  1 ) ) ( ( x 
.x.  A )  =  ( y  .x.  A
)  <->  y  =  ( x  mod  ( O `
 A ) ) ) )
54 reu6i 3155 . . . . . . . . . . 11  |-  ( ( ( x  mod  ( O `  A )
)  e.  ( 0 ... ( ( O `
 A )  - 
1 ) )  /\  A. y  e.  ( 0 ... ( ( O `
 A )  - 
1 ) ) ( ( x  .x.  A
)  =  ( y 
.x.  A )  <->  y  =  ( x  mod  ( O `
 A ) ) ) )  ->  E! y  e.  ( 0 ... ( ( O `
 A )  - 
1 ) ) ( x  .x.  A )  =  ( y  .x.  A ) )
5524, 53, 54syl2anc 661 . . . . . . . . . 10  |-  ( ( ( ( G  e. 
Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  /\  x  e.  ZZ )  ->  E! y  e.  ( 0 ... ( ( O `
 A )  - 
1 ) ) ( x  .x.  A )  =  ( y  .x.  A ) )
5655ralrimiva 2804 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  ->  A. x  e.  ZZ  E! y  e.  (
0 ... ( ( O `
 A )  - 
1 ) ) ( x  .x.  A )  =  ( y  .x.  A ) )
57 ovex 6121 . . . . . . . . . . 11  |-  ( x 
.x.  A )  e. 
_V
5857rgenw 2788 . . . . . . . . . 10  |-  A. x  e.  ZZ  ( x  .x.  A )  e.  _V
59 eqeq1 2449 . . . . . . . . . . . 12  |-  ( z  =  ( x  .x.  A )  ->  (
z  =  ( y 
.x.  A )  <->  ( x  .x.  A )  =  ( y  .x.  A ) ) )
6059reubidv 2910 . . . . . . . . . . 11  |-  ( z  =  ( x  .x.  A )  ->  ( E! y  e.  (
0 ... ( ( O `
 A )  - 
1 ) ) z  =  ( y  .x.  A )  <->  E! y  e.  ( 0 ... (
( O `  A
)  -  1 ) ) ( x  .x.  A )  =  ( y  .x.  A ) ) )
618, 60ralrnmpt 5857 . . . . . . . . . 10  |-  ( A. x  e.  ZZ  (
x  .x.  A )  e.  _V  ->  ( A. z  e.  ran  F E! y  e.  ( 0 ... ( ( O `
 A )  - 
1 ) ) z  =  ( y  .x.  A )  <->  A. x  e.  ZZ  E! y  e.  ( 0 ... (
( O `  A
)  -  1 ) ) ( x  .x.  A )  =  ( y  .x.  A ) ) )
6258, 61ax-mp 5 . . . . . . . . 9  |-  ( A. z  e.  ran  F E! y  e.  ( 0 ... ( ( O `
 A )  - 
1 ) ) z  =  ( y  .x.  A )  <->  A. x  e.  ZZ  E! y  e.  ( 0 ... (
( O `  A
)  -  1 ) ) ( x  .x.  A )  =  ( y  .x.  A ) )
6356, 62sylibr 212 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  ->  A. z  e.  ran  F E! y  e.  ( 0 ... ( ( O `  A )  -  1 ) ) z  =  ( y 
.x.  A ) )
64 eqid 2443 . . . . . . . . 9  |-  ( y  e.  ( 0 ... ( ( O `  A )  -  1 ) )  |->  ( y 
.x.  A ) )  =  ( y  e.  ( 0 ... (
( O `  A
)  -  1 ) )  |->  ( y  .x.  A ) )
6564f1ompt 5870 . . . . . . . 8  |-  ( ( y  e.  ( 0 ... ( ( O `
 A )  - 
1 ) )  |->  ( y  .x.  A ) ) : ( 0 ... ( ( O `
 A )  - 
1 ) ) -1-1-onto-> ran  F  <->  ( A. y  e.  ( 0 ... ( ( O `  A )  -  1 ) ) ( y  .x.  A
)  e.  ran  F  /\  A. z  e.  ran  F E! y  e.  ( 0 ... ( ( O `  A )  -  1 ) ) z  =  ( y 
.x.  A ) ) )
6621, 63, 65sylanbrc 664 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  ->  ( y  e.  ( 0 ... (
( O `  A
)  -  1 ) )  |->  ( y  .x.  A ) ) : ( 0 ... (
( O `  A
)  -  1 ) ) -1-1-onto-> ran  F )
67 f1oen2g 7331 . . . . . . 7  |-  ( ( ( 0 ... (
( O `  A
)  -  1 ) )  e.  Fin  /\  ran  F  e.  _V  /\  ( y  e.  ( 0 ... ( ( O `  A )  -  1 ) ) 
|->  ( y  .x.  A
) ) : ( 0 ... ( ( O `  A )  -  1 ) ) -1-1-onto-> ran 
F )  ->  (
0 ... ( ( O `
 A )  - 
1 ) )  ~~  ran  F )
681, 14, 66, 67syl3anc 1218 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  ->  ( 0 ... ( ( O `  A )  -  1 ) )  ~~  ran  F )
69 enfi 7534 . . . . . 6  |-  ( ( 0 ... ( ( O `  A )  -  1 ) ) 
~~  ran  F  ->  ( ( 0 ... (
( O `  A
)  -  1 ) )  e.  Fin  <->  ran  F  e. 
Fin ) )
7068, 69syl 16 . . . . 5  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  ->  ( ( 0 ... ( ( O `
 A )  - 
1 ) )  e. 
Fin 
<->  ran  F  e.  Fin ) )
711, 70mpbid 210 . . . 4  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  ->  ran  F  e.  Fin )
72 iftrue 3802 . . . 4  |-  ( ran 
F  e.  Fin  ->  if ( ran  F  e. 
Fin ,  ( # `  ran  F ) ,  0 )  =  ( # `  ran  F ) )
7371, 72syl 16 . . 3  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  ->  if ( ran 
F  e.  Fin , 
( # `  ran  F
) ,  0 )  =  ( # `  ran  F ) )
74 fz01en 11482 . . . . . 6  |-  ( ( O `  A )  e.  ZZ  ->  (
0 ... ( ( O `
 A )  - 
1 ) )  ~~  ( 1 ... ( O `  A )
) )
75 ensym 7363 . . . . . 6  |-  ( ( 0 ... ( ( O `  A )  -  1 ) ) 
~~  ( 1 ... ( O `  A
) )  ->  (
1 ... ( O `  A ) )  ~~  ( 0 ... (
( O `  A
)  -  1 ) ) )
7634, 74, 753syl 20 . . . . 5  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  ->  ( 1 ... ( O `  A
) )  ~~  (
0 ... ( ( O `
 A )  - 
1 ) ) )
77 entr 7366 . . . . 5  |-  ( ( ( 1 ... ( O `  A )
)  ~~  ( 0 ... ( ( O `
 A )  - 
1 ) )  /\  ( 0 ... (
( O `  A
)  -  1 ) )  ~~  ran  F
)  ->  ( 1 ... ( O `  A ) )  ~~  ran  F )
7876, 68, 77syl2anc 661 . . . 4  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  ->  ( 1 ... ( O `  A
) )  ~~  ran  F )
79 fzfid 11800 . . . . 5  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  ->  ( 1 ... ( O `  A
) )  e.  Fin )
80 hashen 12123 . . . . 5  |-  ( ( ( 1 ... ( O `  A )
)  e.  Fin  /\  ran  F  e.  Fin )  ->  ( ( # `  (
1 ... ( O `  A ) ) )  =  ( # `  ran  F )  <->  ( 1 ... ( O `  A
) )  ~~  ran  F ) )
8179, 71, 80syl2anc 661 . . . 4  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  ->  ( ( # `  ( 1 ... ( O `  A )
) )  =  (
# `  ran  F )  <-> 
( 1 ... ( O `  A )
)  ~~  ran  F ) )
8278, 81mpbird 232 . . 3  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  ->  ( # `  (
1 ... ( O `  A ) ) )  =  ( # `  ran  F ) )
83 nnnn0 10591 . . . . 5  |-  ( ( O `  A )  e.  NN  ->  ( O `  A )  e.  NN0 )
8483adantl 466 . . . 4  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  ->  ( O `  A )  e.  NN0 )
85 hashfz1 12122 . . . 4  |-  ( ( O `  A )  e.  NN0  ->  ( # `  ( 1 ... ( O `  A )
) )  =  ( O `  A ) )
8684, 85syl 16 . . 3  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  ->  ( # `  (
1 ... ( O `  A ) ) )  =  ( O `  A ) )
8773, 82, 863eqtr2rd 2482 . 2  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  ->  ( O `  A )  =  if ( ran  F  e. 
Fin ,  ( # `  ran  F ) ,  0 ) )
88 simp3 990 . . . 4  |-  ( ( G  e.  Grp  /\  A  e.  X  /\  ( O `  A )  =  0 )  -> 
( O `  A
)  =  0 )
892, 48, 3, 8odinf 16069 . . . . 5  |-  ( ( G  e.  Grp  /\  A  e.  X  /\  ( O `  A )  =  0 )  ->  -.  ran  F  e.  Fin )
90 iffalse 3804 . . . . 5  |-  ( -. 
ran  F  e.  Fin  ->  if ( ran  F  e.  Fin ,  ( # `  ran  F ) ,  0 )  =  0 )
9189, 90syl 16 . . . 4  |-  ( ( G  e.  Grp  /\  A  e.  X  /\  ( O `  A )  =  0 )  ->  if ( ran  F  e. 
Fin ,  ( # `  ran  F ) ,  0 )  =  0 )
9288, 91eqtr4d 2478 . . 3  |-  ( ( G  e.  Grp  /\  A  e.  X  /\  ( O `  A )  =  0 )  -> 
( O `  A
)  =  if ( ran  F  e.  Fin ,  ( # `  ran  F ) ,  0 ) )
93923expa 1187 . 2  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( O `  A )  =  0 )  ->  ( O `  A )  =  if ( ran  F  e. 
Fin ,  ( # `  ran  F ) ,  0 ) )
942, 48odcl 16044 . . . 4  |-  ( A  e.  X  ->  ( O `  A )  e.  NN0 )
9594adantl 466 . . 3  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  ( O `  A
)  e.  NN0 )
96 elnn0 10586 . . 3  |-  ( ( O `  A )  e.  NN0  <->  ( ( O `
 A )  e.  NN  \/  ( O `
 A )  =  0 ) )
9795, 96sylib 196 . 2  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  ( ( O `  A )  e.  NN  \/  ( O `  A
)  =  0 ) )
9887, 93, 97mpjaodan 784 1  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  ( O `  A
)  =  if ( ran  F  e.  Fin ,  ( # `  ran  F ) ,  0 ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   A.wral 2720   E!wreu 2722   _Vcvv 2977    C_ wss 3333   ifcif 3796   class class class wbr 4297    e. cmpt 4355   ran crn 4846   -->wf 5419   -1-1-onto->wf1o 5422   ` cfv 5423  (class class class)co 6096    ~~ cen 7312   Fincfn 7315   RRcr 9286   0cc0 9287   1c1 9288    < clt 9423    <_ cle 9424    - cmin 9600   NNcn 10327   NN0cn0 10584   ZZcz 10651   RR+crp 10996   ...cfz 11442    mod cmo 11713   #chash 12108    || cdivides 13540   Basecbs 14179   0gc0g 14383   Grpcgrp 15415  .gcmg 15419   odcod 16033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4408  ax-sep 4418  ax-nul 4426  ax-pow 4475  ax-pr 4536  ax-un 6377  ax-inf2 7852  ax-cnex 9343  ax-resscn 9344  ax-1cn 9345  ax-icn 9346  ax-addcl 9347  ax-addrcl 9348  ax-mulcl 9349  ax-mulrcl 9350  ax-mulcom 9351  ax-addass 9352  ax-mulass 9353  ax-distr 9354  ax-i2m1 9355  ax-1ne0 9356  ax-1rid 9357  ax-rnegex 9358  ax-rrecex 9359  ax-cnre 9360  ax-pre-lttri 9361  ax-pre-lttrn 9362  ax-pre-ltadd 9363  ax-pre-mulgt0 9364  ax-pre-sup 9365
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2573  df-ne 2613  df-nel 2614  df-ral 2725  df-rex 2726  df-reu 2727  df-rmo 2728  df-rab 2729  df-v 2979  df-sbc 3192  df-csb 3294  df-dif 3336  df-un 3338  df-in 3340  df-ss 3347  df-pss 3349  df-nul 3643  df-if 3797  df-pw 3867  df-sn 3883  df-pr 3885  df-tp 3887  df-op 3889  df-uni 4097  df-int 4134  df-iun 4178  df-br 4298  df-opab 4356  df-mpt 4357  df-tr 4391  df-eprel 4637  df-id 4641  df-po 4646  df-so 4647  df-fr 4684  df-se 4685  df-we 4686  df-ord 4727  df-on 4728  df-lim 4729  df-suc 4730  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5386  df-fun 5425  df-fn 5426  df-f 5427  df-f1 5428  df-fo 5429  df-f1o 5430  df-fv 5431  df-isom 5432  df-riota 6057  df-ov 6099  df-oprab 6100  df-mpt2 6101  df-om 6482  df-1st 6582  df-2nd 6583  df-recs 6837  df-rdg 6871  df-1o 6925  df-oadd 6929  df-omul 6930  df-er 7106  df-map 7221  df-en 7316  df-dom 7317  df-sdom 7318  df-fin 7319  df-sup 7696  df-oi 7729  df-card 8114  df-acn 8117  df-pnf 9425  df-mnf 9426  df-xr 9427  df-ltxr 9428  df-le 9429  df-sub 9602  df-neg 9603  df-div 9999  df-nn 10328  df-2 10385  df-3 10386  df-n0 10585  df-z 10652  df-uz 10867  df-rp 10997  df-fz 11443  df-fl 11647  df-mod 11714  df-seq 11812  df-exp 11871  df-hash 12109  df-cj 12593  df-re 12594  df-im 12595  df-sqr 12729  df-abs 12730  df-dvds 13541  df-0g 14385  df-mnd 15420  df-grp 15550  df-minusg 15551  df-sbg 15552  df-mulg 15553  df-od 16037
This theorem is referenced by:  oddvds2  16072  cyggenod  16366  cyggenod2  16367
  Copyright terms: Public domain W3C validator