MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfod2 Structured version   Unicode version

Theorem dfod2 16788
Description: An alternative definition of the order of a group element is as the cardinality of the cyclic subgroup generated by the element. (Contributed by Mario Carneiro, 14-Jan-2015.) (Revised by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
odf1.1  |-  X  =  ( Base `  G
)
odf1.2  |-  O  =  ( od `  G
)
odf1.3  |-  .x.  =  (.g
`  G )
odf1.4  |-  F  =  ( x  e.  ZZ  |->  ( x  .x.  A ) )
Assertion
Ref Expression
dfod2  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  ( O `  A
)  =  if ( ran  F  e.  Fin ,  ( # `  ran  F ) ,  0 ) )
Distinct variable groups:    x, A    x, G    x, O    x,  .x.    x, X
Allowed substitution hint:    F( x)

Proof of Theorem dfod2
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fzfid 12068 . . . . 5  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  ->  ( 0 ... ( ( O `  A )  -  1 ) )  e.  Fin )
2 odf1.1 . . . . . . . . . . . . 13  |-  X  =  ( Base `  G
)
3 odf1.3 . . . . . . . . . . . . 13  |-  .x.  =  (.g
`  G )
42, 3mulgcl 16361 . . . . . . . . . . . 12  |-  ( ( G  e.  Grp  /\  x  e.  ZZ  /\  A  e.  X )  ->  (
x  .x.  A )  e.  X )
543expa 1194 . . . . . . . . . . 11  |-  ( ( ( G  e.  Grp  /\  x  e.  ZZ )  /\  A  e.  X
)  ->  ( x  .x.  A )  e.  X
)
65an32s 802 . . . . . . . . . 10  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  x  e.  ZZ )  ->  ( x  .x.  A )  e.  X
)
76adantlr 712 . . . . . . . . 9  |-  ( ( ( ( G  e. 
Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  /\  x  e.  ZZ )  ->  (
x  .x.  A )  e.  X )
8 odf1.4 . . . . . . . . 9  |-  F  =  ( x  e.  ZZ  |->  ( x  .x.  A ) )
97, 8fmptd 6031 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  ->  F : ZZ --> X )
10 frn 5719 . . . . . . . 8  |-  ( F : ZZ --> X  ->  ran  F  C_  X )
11 fvex 5858 . . . . . . . . . 10  |-  ( Base `  G )  e.  _V
122, 11eqeltri 2538 . . . . . . . . 9  |-  X  e. 
_V
1312ssex 4581 . . . . . . . 8  |-  ( ran 
F  C_  X  ->  ran 
F  e.  _V )
149, 10, 133syl 20 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  ->  ran  F  e.  _V )
15 elfzelz 11691 . . . . . . . . . . 11  |-  ( y  e.  ( 0 ... ( ( O `  A )  -  1 ) )  ->  y  e.  ZZ )
1615adantl 464 . . . . . . . . . 10  |-  ( ( ( ( G  e. 
Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  /\  y  e.  ( 0 ... (
( O `  A
)  -  1 ) ) )  ->  y  e.  ZZ )
17 ovex 6298 . . . . . . . . . 10  |-  ( y 
.x.  A )  e. 
_V
18 oveq1 6277 . . . . . . . . . . 11  |-  ( x  =  y  ->  (
x  .x.  A )  =  ( y  .x.  A ) )
198, 18elrnmpt1s 5239 . . . . . . . . . 10  |-  ( ( y  e.  ZZ  /\  ( y  .x.  A
)  e.  _V )  ->  ( y  .x.  A
)  e.  ran  F
)
2016, 17, 19sylancl 660 . . . . . . . . 9  |-  ( ( ( ( G  e. 
Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  /\  y  e.  ( 0 ... (
( O `  A
)  -  1 ) ) )  ->  (
y  .x.  A )  e.  ran  F )
2120ralrimiva 2868 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  ->  A. y  e.  ( 0 ... ( ( O `  A )  -  1 ) ) ( y  .x.  A
)  e.  ran  F
)
22 zmodfz 12000 . . . . . . . . . . . . 13  |-  ( ( x  e.  ZZ  /\  ( O `  A )  e.  NN )  -> 
( x  mod  ( O `  A )
)  e.  ( 0 ... ( ( O `
 A )  - 
1 ) ) )
2322ancoms 451 . . . . . . . . . . . 12  |-  ( ( ( O `  A
)  e.  NN  /\  x  e.  ZZ )  ->  ( x  mod  ( O `  A )
)  e.  ( 0 ... ( ( O `
 A )  - 
1 ) ) )
2423adantll 711 . . . . . . . . . . 11  |-  ( ( ( ( G  e. 
Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  /\  x  e.  ZZ )  ->  (
x  mod  ( O `  A ) )  e.  ( 0 ... (
( O `  A
)  -  1 ) ) )
25 simpllr 758 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  /\  x  e.  ZZ )  /\  y  e.  ( 0 ... (
( O `  A
)  -  1 ) ) )  ->  ( O `  A )  e.  NN )
26 simplr 753 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  /\  x  e.  ZZ )  /\  y  e.  ( 0 ... (
( O `  A
)  -  1 ) ) )  ->  x  e.  ZZ )
2715adantl 464 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  /\  x  e.  ZZ )  /\  y  e.  ( 0 ... (
( O `  A
)  -  1 ) ) )  ->  y  e.  ZZ )
28 moddvds 14080 . . . . . . . . . . . . . 14  |-  ( ( ( O `  A
)  e.  NN  /\  x  e.  ZZ  /\  y  e.  ZZ )  ->  (
( x  mod  ( O `  A )
)  =  ( y  mod  ( O `  A ) )  <->  ( O `  A )  ||  (
x  -  y ) ) )
2925, 26, 27, 28syl3anc 1226 . . . . . . . . . . . . 13  |-  ( ( ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  /\  x  e.  ZZ )  /\  y  e.  ( 0 ... (
( O `  A
)  -  1 ) ) )  ->  (
( x  mod  ( O `  A )
)  =  ( y  mod  ( O `  A ) )  <->  ( O `  A )  ||  (
x  -  y ) ) )
3027zred 10965 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  /\  x  e.  ZZ )  /\  y  e.  ( 0 ... (
( O `  A
)  -  1 ) ) )  ->  y  e.  RR )
3125nnrpd 11257 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  /\  x  e.  ZZ )  /\  y  e.  ( 0 ... (
( O `  A
)  -  1 ) ) )  ->  ( O `  A )  e.  RR+ )
32 0z 10871 . . . . . . . . . . . . . . . . . . 19  |-  0  e.  ZZ
33 nnz 10882 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( O `  A )  e.  NN  ->  ( O `  A )  e.  ZZ )
3433adantl 464 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  ->  ( O `  A )  e.  ZZ )
3534adantr 463 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( G  e. 
Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  /\  x  e.  ZZ )  ->  ( O `  A )  e.  ZZ )
36 elfzm11 11753 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 0  e.  ZZ  /\  ( O `  A )  e.  ZZ )  -> 
( y  e.  ( 0 ... ( ( O `  A )  -  1 ) )  <-> 
( y  e.  ZZ  /\  0  <_  y  /\  y  <  ( O `  A ) ) ) )
3732, 35, 36sylancr 661 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( G  e. 
Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  /\  x  e.  ZZ )  ->  (
y  e.  ( 0 ... ( ( O `
 A )  - 
1 ) )  <->  ( y  e.  ZZ  /\  0  <_ 
y  /\  y  <  ( O `  A ) ) ) )
3837biimpa 482 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  /\  x  e.  ZZ )  /\  y  e.  ( 0 ... (
( O `  A
)  -  1 ) ) )  ->  (
y  e.  ZZ  /\  0  <_  y  /\  y  <  ( O `  A
) ) )
3938simp2d 1007 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  /\  x  e.  ZZ )  /\  y  e.  ( 0 ... (
( O `  A
)  -  1 ) ) )  ->  0  <_  y )
4038simp3d 1008 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  /\  x  e.  ZZ )  /\  y  e.  ( 0 ... (
( O `  A
)  -  1 ) ) )  ->  y  <  ( O `  A
) )
41 modid 12003 . . . . . . . . . . . . . . . 16  |-  ( ( ( y  e.  RR  /\  ( O `  A
)  e.  RR+ )  /\  ( 0  <_  y  /\  y  <  ( O `
 A ) ) )  ->  ( y  mod  ( O `  A
) )  =  y )
4230, 31, 39, 40, 41syl22anc 1227 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  /\  x  e.  ZZ )  /\  y  e.  ( 0 ... (
( O `  A
)  -  1 ) ) )  ->  (
y  mod  ( O `  A ) )  =  y )
4342eqeq2d 2468 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  /\  x  e.  ZZ )  /\  y  e.  ( 0 ... (
( O `  A
)  -  1 ) ) )  ->  (
( x  mod  ( O `  A )
)  =  ( y  mod  ( O `  A ) )  <->  ( x  mod  ( O `  A
) )  =  y ) )
44 eqcom 2463 . . . . . . . . . . . . . 14  |-  ( ( x  mod  ( O `
 A ) )  =  y  <->  y  =  ( x  mod  ( O `
 A ) ) )
4543, 44syl6bb 261 . . . . . . . . . . . . 13  |-  ( ( ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  /\  x  e.  ZZ )  /\  y  e.  ( 0 ... (
( O `  A
)  -  1 ) ) )  ->  (
( x  mod  ( O `  A )
)  =  ( y  mod  ( O `  A ) )  <->  y  =  ( x  mod  ( O `
 A ) ) ) )
46 simp-4l 765 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  /\  x  e.  ZZ )  /\  y  e.  ( 0 ... (
( O `  A
)  -  1 ) ) )  ->  G  e.  Grp )
47 simp-4r 766 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  /\  x  e.  ZZ )  /\  y  e.  ( 0 ... (
( O `  A
)  -  1 ) ) )  ->  A  e.  X )
48 odf1.2 . . . . . . . . . . . . . . 15  |-  O  =  ( od `  G
)
49 eqid 2454 . . . . . . . . . . . . . . 15  |-  ( 0g
`  G )  =  ( 0g `  G
)
502, 48, 3, 49odcong 16775 . . . . . . . . . . . . . 14  |-  ( ( G  e.  Grp  /\  A  e.  X  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  ( ( O `  A )  ||  ( x  -  y
)  <->  ( x  .x.  A )  =  ( y  .x.  A ) ) )
5146, 47, 26, 27, 50syl112anc 1230 . . . . . . . . . . . . 13  |-  ( ( ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  /\  x  e.  ZZ )  /\  y  e.  ( 0 ... (
( O `  A
)  -  1 ) ) )  ->  (
( O `  A
)  ||  ( x  -  y )  <->  ( x  .x.  A )  =  ( y  .x.  A ) ) )
5229, 45, 513bitr3rd 284 . . . . . . . . . . . 12  |-  ( ( ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  /\  x  e.  ZZ )  /\  y  e.  ( 0 ... (
( O `  A
)  -  1 ) ) )  ->  (
( x  .x.  A
)  =  ( y 
.x.  A )  <->  y  =  ( x  mod  ( O `
 A ) ) ) )
5352ralrimiva 2868 . . . . . . . . . . 11  |-  ( ( ( ( G  e. 
Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  /\  x  e.  ZZ )  ->  A. y  e.  ( 0 ... (
( O `  A
)  -  1 ) ) ( ( x 
.x.  A )  =  ( y  .x.  A
)  <->  y  =  ( x  mod  ( O `
 A ) ) ) )
54 reu6i 3287 . . . . . . . . . . 11  |-  ( ( ( x  mod  ( O `  A )
)  e.  ( 0 ... ( ( O `
 A )  - 
1 ) )  /\  A. y  e.  ( 0 ... ( ( O `
 A )  - 
1 ) ) ( ( x  .x.  A
)  =  ( y 
.x.  A )  <->  y  =  ( x  mod  ( O `
 A ) ) ) )  ->  E! y  e.  ( 0 ... ( ( O `
 A )  - 
1 ) ) ( x  .x.  A )  =  ( y  .x.  A ) )
5524, 53, 54syl2anc 659 . . . . . . . . . 10  |-  ( ( ( ( G  e. 
Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  /\  x  e.  ZZ )  ->  E! y  e.  ( 0 ... ( ( O `
 A )  - 
1 ) ) ( x  .x.  A )  =  ( y  .x.  A ) )
5655ralrimiva 2868 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  ->  A. x  e.  ZZ  E! y  e.  (
0 ... ( ( O `
 A )  - 
1 ) ) ( x  .x.  A )  =  ( y  .x.  A ) )
57 ovex 6298 . . . . . . . . . . 11  |-  ( x 
.x.  A )  e. 
_V
5857rgenw 2815 . . . . . . . . . 10  |-  A. x  e.  ZZ  ( x  .x.  A )  e.  _V
59 eqeq1 2458 . . . . . . . . . . . 12  |-  ( z  =  ( x  .x.  A )  ->  (
z  =  ( y 
.x.  A )  <->  ( x  .x.  A )  =  ( y  .x.  A ) ) )
6059reubidv 3039 . . . . . . . . . . 11  |-  ( z  =  ( x  .x.  A )  ->  ( E! y  e.  (
0 ... ( ( O `
 A )  - 
1 ) ) z  =  ( y  .x.  A )  <->  E! y  e.  ( 0 ... (
( O `  A
)  -  1 ) ) ( x  .x.  A )  =  ( y  .x.  A ) ) )
618, 60ralrnmpt 6016 . . . . . . . . . 10  |-  ( A. x  e.  ZZ  (
x  .x.  A )  e.  _V  ->  ( A. z  e.  ran  F E! y  e.  ( 0 ... ( ( O `
 A )  - 
1 ) ) z  =  ( y  .x.  A )  <->  A. x  e.  ZZ  E! y  e.  ( 0 ... (
( O `  A
)  -  1 ) ) ( x  .x.  A )  =  ( y  .x.  A ) ) )
6258, 61ax-mp 5 . . . . . . . . 9  |-  ( A. z  e.  ran  F E! y  e.  ( 0 ... ( ( O `
 A )  - 
1 ) ) z  =  ( y  .x.  A )  <->  A. x  e.  ZZ  E! y  e.  ( 0 ... (
( O `  A
)  -  1 ) ) ( x  .x.  A )  =  ( y  .x.  A ) )
6356, 62sylibr 212 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  ->  A. z  e.  ran  F E! y  e.  ( 0 ... ( ( O `  A )  -  1 ) ) z  =  ( y 
.x.  A ) )
64 eqid 2454 . . . . . . . . 9  |-  ( y  e.  ( 0 ... ( ( O `  A )  -  1 ) )  |->  ( y 
.x.  A ) )  =  ( y  e.  ( 0 ... (
( O `  A
)  -  1 ) )  |->  ( y  .x.  A ) )
6564f1ompt 6029 . . . . . . . 8  |-  ( ( y  e.  ( 0 ... ( ( O `
 A )  - 
1 ) )  |->  ( y  .x.  A ) ) : ( 0 ... ( ( O `
 A )  - 
1 ) ) -1-1-onto-> ran  F  <->  ( A. y  e.  ( 0 ... ( ( O `  A )  -  1 ) ) ( y  .x.  A
)  e.  ran  F  /\  A. z  e.  ran  F E! y  e.  ( 0 ... ( ( O `  A )  -  1 ) ) z  =  ( y 
.x.  A ) ) )
6621, 63, 65sylanbrc 662 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  ->  ( y  e.  ( 0 ... (
( O `  A
)  -  1 ) )  |->  ( y  .x.  A ) ) : ( 0 ... (
( O `  A
)  -  1 ) ) -1-1-onto-> ran  F )
67 f1oen2g 7525 . . . . . . 7  |-  ( ( ( 0 ... (
( O `  A
)  -  1 ) )  e.  Fin  /\  ran  F  e.  _V  /\  ( y  e.  ( 0 ... ( ( O `  A )  -  1 ) ) 
|->  ( y  .x.  A
) ) : ( 0 ... ( ( O `  A )  -  1 ) ) -1-1-onto-> ran 
F )  ->  (
0 ... ( ( O `
 A )  - 
1 ) )  ~~  ran  F )
681, 14, 66, 67syl3anc 1226 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  ->  ( 0 ... ( ( O `  A )  -  1 ) )  ~~  ran  F )
69 enfi 7729 . . . . . 6  |-  ( ( 0 ... ( ( O `  A )  -  1 ) ) 
~~  ran  F  ->  ( ( 0 ... (
( O `  A
)  -  1 ) )  e.  Fin  <->  ran  F  e. 
Fin ) )
7068, 69syl 16 . . . . 5  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  ->  ( ( 0 ... ( ( O `
 A )  - 
1 ) )  e. 
Fin 
<->  ran  F  e.  Fin ) )
711, 70mpbid 210 . . . 4  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  ->  ran  F  e.  Fin )
7271iftrued 3937 . . 3  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  ->  if ( ran 
F  e.  Fin , 
( # `  ran  F
) ,  0 )  =  ( # `  ran  F ) )
73 fz01en 11716 . . . . . 6  |-  ( ( O `  A )  e.  ZZ  ->  (
0 ... ( ( O `
 A )  - 
1 ) )  ~~  ( 1 ... ( O `  A )
) )
74 ensym 7557 . . . . . 6  |-  ( ( 0 ... ( ( O `  A )  -  1 ) ) 
~~  ( 1 ... ( O `  A
) )  ->  (
1 ... ( O `  A ) )  ~~  ( 0 ... (
( O `  A
)  -  1 ) ) )
7534, 73, 743syl 20 . . . . 5  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  ->  ( 1 ... ( O `  A
) )  ~~  (
0 ... ( ( O `
 A )  - 
1 ) ) )
76 entr 7560 . . . . 5  |-  ( ( ( 1 ... ( O `  A )
)  ~~  ( 0 ... ( ( O `
 A )  - 
1 ) )  /\  ( 0 ... (
( O `  A
)  -  1 ) )  ~~  ran  F
)  ->  ( 1 ... ( O `  A ) )  ~~  ran  F )
7775, 68, 76syl2anc 659 . . . 4  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  ->  ( 1 ... ( O `  A
) )  ~~  ran  F )
78 fzfid 12068 . . . . 5  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  ->  ( 1 ... ( O `  A
) )  e.  Fin )
79 hashen 12405 . . . . 5  |-  ( ( ( 1 ... ( O `  A )
)  e.  Fin  /\  ran  F  e.  Fin )  ->  ( ( # `  (
1 ... ( O `  A ) ) )  =  ( # `  ran  F )  <->  ( 1 ... ( O `  A
) )  ~~  ran  F ) )
8078, 71, 79syl2anc 659 . . . 4  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  ->  ( ( # `  ( 1 ... ( O `  A )
) )  =  (
# `  ran  F )  <-> 
( 1 ... ( O `  A )
)  ~~  ran  F ) )
8177, 80mpbird 232 . . 3  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  ->  ( # `  (
1 ... ( O `  A ) ) )  =  ( # `  ran  F ) )
82 nnnn0 10798 . . . . 5  |-  ( ( O `  A )  e.  NN  ->  ( O `  A )  e.  NN0 )
8382adantl 464 . . . 4  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  ->  ( O `  A )  e.  NN0 )
84 hashfz1 12404 . . . 4  |-  ( ( O `  A )  e.  NN0  ->  ( # `  ( 1 ... ( O `  A )
) )  =  ( O `  A ) )
8583, 84syl 16 . . 3  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  ->  ( # `  (
1 ... ( O `  A ) ) )  =  ( O `  A ) )
8672, 81, 853eqtr2rd 2502 . 2  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  ->  ( O `  A )  =  if ( ran  F  e. 
Fin ,  ( # `  ran  F ) ,  0 ) )
87 simp3 996 . . . 4  |-  ( ( G  e.  Grp  /\  A  e.  X  /\  ( O `  A )  =  0 )  -> 
( O `  A
)  =  0 )
882, 48, 3, 8odinf 16787 . . . . 5  |-  ( ( G  e.  Grp  /\  A  e.  X  /\  ( O `  A )  =  0 )  ->  -.  ran  F  e.  Fin )
8988iffalsed 3940 . . . 4  |-  ( ( G  e.  Grp  /\  A  e.  X  /\  ( O `  A )  =  0 )  ->  if ( ran  F  e. 
Fin ,  ( # `  ran  F ) ,  0 )  =  0 )
9087, 89eqtr4d 2498 . . 3  |-  ( ( G  e.  Grp  /\  A  e.  X  /\  ( O `  A )  =  0 )  -> 
( O `  A
)  =  if ( ran  F  e.  Fin ,  ( # `  ran  F ) ,  0 ) )
91903expa 1194 . 2  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( O `  A )  =  0 )  ->  ( O `  A )  =  if ( ran  F  e. 
Fin ,  ( # `  ran  F ) ,  0 ) )
922, 48odcl 16762 . . . 4  |-  ( A  e.  X  ->  ( O `  A )  e.  NN0 )
9392adantl 464 . . 3  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  ( O `  A
)  e.  NN0 )
94 elnn0 10793 . . 3  |-  ( ( O `  A )  e.  NN0  <->  ( ( O `
 A )  e.  NN  \/  ( O `
 A )  =  0 ) )
9593, 94sylib 196 . 2  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  ( ( O `  A )  e.  NN  \/  ( O `  A
)  =  0 ) )
9686, 91, 95mpjaodan 784 1  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  ( O `  A
)  =  if ( ran  F  e.  Fin ,  ( # `  ran  F ) ,  0 ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    \/ wo 366    /\ wa 367    /\ w3a 971    = wceq 1398    e. wcel 1823   A.wral 2804   E!wreu 2806   _Vcvv 3106    C_ wss 3461   ifcif 3929   class class class wbr 4439    |-> cmpt 4497   ran crn 4989   -->wf 5566   -1-1-onto->wf1o 5569   ` cfv 5570  (class class class)co 6270    ~~ cen 7506   Fincfn 7509   RRcr 9480   0cc0 9481   1c1 9482    < clt 9617    <_ cle 9618    - cmin 9796   NNcn 10531   NN0cn0 10791   ZZcz 10860   RR+crp 11221   ...cfz 11675    mod cmo 11978   #chash 12390    || cdvds 14073   Basecbs 14719   0gc0g 14932   Grpcgrp 16255  .gcmg 16258   odcod 16751
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-inf2 8049  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558  ax-pre-sup 9559
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-int 4272  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-se 4828  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-isom 5579  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-om 6674  df-1st 6773  df-2nd 6774  df-recs 7034  df-rdg 7068  df-1o 7122  df-oadd 7126  df-omul 7127  df-er 7303  df-map 7414  df-en 7510  df-dom 7511  df-sdom 7512  df-fin 7513  df-sup 7893  df-oi 7927  df-card 8311  df-acn 8314  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-div 10203  df-nn 10532  df-2 10590  df-3 10591  df-n0 10792  df-z 10861  df-uz 11083  df-rp 11222  df-fz 11676  df-fl 11910  df-mod 11979  df-seq 12093  df-exp 12152  df-hash 12391  df-cj 13017  df-re 13018  df-im 13019  df-sqrt 13153  df-abs 13154  df-dvds 14074  df-0g 14934  df-mgm 16074  df-sgrp 16113  df-mnd 16123  df-grp 16259  df-minusg 16260  df-sbg 16261  df-mulg 16262  df-od 16755
This theorem is referenced by:  oddvds2  16790  cyggenod  17089  cyggenod2  17090
  Copyright terms: Public domain W3C validator