MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfod2 Structured version   Visualization version   Unicode version

Theorem dfod2 17215
Description: An alternative definition of the order of a group element is as the cardinality of the cyclic subgroup generated by the element. (Contributed by Mario Carneiro, 14-Jan-2015.) (Revised by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
odf1.1  |-  X  =  ( Base `  G
)
odf1.2  |-  O  =  ( od `  G
)
odf1.3  |-  .x.  =  (.g
`  G )
odf1.4  |-  F  =  ( x  e.  ZZ  |->  ( x  .x.  A ) )
Assertion
Ref Expression
dfod2  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  ( O `  A
)  =  if ( ran  F  e.  Fin ,  ( # `  ran  F ) ,  0 ) )
Distinct variable groups:    x, A    x, G    x, O    x,  .x.    x, X
Allowed substitution hint:    F( x)

Proof of Theorem dfod2
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fzfid 12186 . . . . 5  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  ->  ( 0 ... ( ( O `  A )  -  1 ) )  e.  Fin )
2 odf1.1 . . . . . . . . . . . . 13  |-  X  =  ( Base `  G
)
3 odf1.3 . . . . . . . . . . . . 13  |-  .x.  =  (.g
`  G )
42, 3mulgcl 16775 . . . . . . . . . . . 12  |-  ( ( G  e.  Grp  /\  x  e.  ZZ  /\  A  e.  X )  ->  (
x  .x.  A )  e.  X )
543expa 1208 . . . . . . . . . . 11  |-  ( ( ( G  e.  Grp  /\  x  e.  ZZ )  /\  A  e.  X
)  ->  ( x  .x.  A )  e.  X
)
65an32s 813 . . . . . . . . . 10  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  x  e.  ZZ )  ->  ( x  .x.  A )  e.  X
)
76adantlr 721 . . . . . . . . 9  |-  ( ( ( ( G  e. 
Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  /\  x  e.  ZZ )  ->  (
x  .x.  A )  e.  X )
8 odf1.4 . . . . . . . . 9  |-  F  =  ( x  e.  ZZ  |->  ( x  .x.  A ) )
97, 8fmptd 6046 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  ->  F : ZZ --> X )
10 frn 5735 . . . . . . . 8  |-  ( F : ZZ --> X  ->  ran  F  C_  X )
11 fvex 5875 . . . . . . . . . 10  |-  ( Base `  G )  e.  _V
122, 11eqeltri 2525 . . . . . . . . 9  |-  X  e. 
_V
1312ssex 4547 . . . . . . . 8  |-  ( ran 
F  C_  X  ->  ran 
F  e.  _V )
149, 10, 133syl 18 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  ->  ran  F  e.  _V )
15 elfzelz 11800 . . . . . . . . . . 11  |-  ( y  e.  ( 0 ... ( ( O `  A )  -  1 ) )  ->  y  e.  ZZ )
1615adantl 468 . . . . . . . . . 10  |-  ( ( ( ( G  e. 
Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  /\  y  e.  ( 0 ... (
( O `  A
)  -  1 ) ) )  ->  y  e.  ZZ )
17 ovex 6318 . . . . . . . . . 10  |-  ( y 
.x.  A )  e. 
_V
18 oveq1 6297 . . . . . . . . . . 11  |-  ( x  =  y  ->  (
x  .x.  A )  =  ( y  .x.  A ) )
198, 18elrnmpt1s 5082 . . . . . . . . . 10  |-  ( ( y  e.  ZZ  /\  ( y  .x.  A
)  e.  _V )  ->  ( y  .x.  A
)  e.  ran  F
)
2016, 17, 19sylancl 668 . . . . . . . . 9  |-  ( ( ( ( G  e. 
Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  /\  y  e.  ( 0 ... (
( O `  A
)  -  1 ) ) )  ->  (
y  .x.  A )  e.  ran  F )
2120ralrimiva 2802 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  ->  A. y  e.  ( 0 ... ( ( O `  A )  -  1 ) ) ( y  .x.  A
)  e.  ran  F
)
22 zmodfz 12118 . . . . . . . . . . . . 13  |-  ( ( x  e.  ZZ  /\  ( O `  A )  e.  NN )  -> 
( x  mod  ( O `  A )
)  e.  ( 0 ... ( ( O `
 A )  - 
1 ) ) )
2322ancoms 455 . . . . . . . . . . . 12  |-  ( ( ( O `  A
)  e.  NN  /\  x  e.  ZZ )  ->  ( x  mod  ( O `  A )
)  e.  ( 0 ... ( ( O `
 A )  - 
1 ) ) )
2423adantll 720 . . . . . . . . . . 11  |-  ( ( ( ( G  e. 
Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  /\  x  e.  ZZ )  ->  (
x  mod  ( O `  A ) )  e.  ( 0 ... (
( O `  A
)  -  1 ) ) )
25 simpllr 769 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  /\  x  e.  ZZ )  /\  y  e.  ( 0 ... (
( O `  A
)  -  1 ) ) )  ->  ( O `  A )  e.  NN )
26 simplr 762 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  /\  x  e.  ZZ )  /\  y  e.  ( 0 ... (
( O `  A
)  -  1 ) ) )  ->  x  e.  ZZ )
2715adantl 468 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  /\  x  e.  ZZ )  /\  y  e.  ( 0 ... (
( O `  A
)  -  1 ) ) )  ->  y  e.  ZZ )
28 moddvds 14312 . . . . . . . . . . . . . 14  |-  ( ( ( O `  A
)  e.  NN  /\  x  e.  ZZ  /\  y  e.  ZZ )  ->  (
( x  mod  ( O `  A )
)  =  ( y  mod  ( O `  A ) )  <->  ( O `  A )  ||  (
x  -  y ) ) )
2925, 26, 27, 28syl3anc 1268 . . . . . . . . . . . . 13  |-  ( ( ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  /\  x  e.  ZZ )  /\  y  e.  ( 0 ... (
( O `  A
)  -  1 ) ) )  ->  (
( x  mod  ( O `  A )
)  =  ( y  mod  ( O `  A ) )  <->  ( O `  A )  ||  (
x  -  y ) ) )
3027zred 11040 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  /\  x  e.  ZZ )  /\  y  e.  ( 0 ... (
( O `  A
)  -  1 ) ) )  ->  y  e.  RR )
3125nnrpd 11339 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  /\  x  e.  ZZ )  /\  y  e.  ( 0 ... (
( O `  A
)  -  1 ) ) )  ->  ( O `  A )  e.  RR+ )
32 0z 10948 . . . . . . . . . . . . . . . . . . 19  |-  0  e.  ZZ
33 nnz 10959 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( O `  A )  e.  NN  ->  ( O `  A )  e.  ZZ )
3433adantl 468 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  ->  ( O `  A )  e.  ZZ )
3534adantr 467 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( G  e. 
Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  /\  x  e.  ZZ )  ->  ( O `  A )  e.  ZZ )
36 elfzm11 11865 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 0  e.  ZZ  /\  ( O `  A )  e.  ZZ )  -> 
( y  e.  ( 0 ... ( ( O `  A )  -  1 ) )  <-> 
( y  e.  ZZ  /\  0  <_  y  /\  y  <  ( O `  A ) ) ) )
3732, 35, 36sylancr 669 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( G  e. 
Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  /\  x  e.  ZZ )  ->  (
y  e.  ( 0 ... ( ( O `
 A )  - 
1 ) )  <->  ( y  e.  ZZ  /\  0  <_ 
y  /\  y  <  ( O `  A ) ) ) )
3837biimpa 487 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  /\  x  e.  ZZ )  /\  y  e.  ( 0 ... (
( O `  A
)  -  1 ) ) )  ->  (
y  e.  ZZ  /\  0  <_  y  /\  y  <  ( O `  A
) ) )
3938simp2d 1021 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  /\  x  e.  ZZ )  /\  y  e.  ( 0 ... (
( O `  A
)  -  1 ) ) )  ->  0  <_  y )
4038simp3d 1022 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  /\  x  e.  ZZ )  /\  y  e.  ( 0 ... (
( O `  A
)  -  1 ) ) )  ->  y  <  ( O `  A
) )
41 modid 12121 . . . . . . . . . . . . . . . 16  |-  ( ( ( y  e.  RR  /\  ( O `  A
)  e.  RR+ )  /\  ( 0  <_  y  /\  y  <  ( O `
 A ) ) )  ->  ( y  mod  ( O `  A
) )  =  y )
4230, 31, 39, 40, 41syl22anc 1269 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  /\  x  e.  ZZ )  /\  y  e.  ( 0 ... (
( O `  A
)  -  1 ) ) )  ->  (
y  mod  ( O `  A ) )  =  y )
4342eqeq2d 2461 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  /\  x  e.  ZZ )  /\  y  e.  ( 0 ... (
( O `  A
)  -  1 ) ) )  ->  (
( x  mod  ( O `  A )
)  =  ( y  mod  ( O `  A ) )  <->  ( x  mod  ( O `  A
) )  =  y ) )
44 eqcom 2458 . . . . . . . . . . . . . 14  |-  ( ( x  mod  ( O `
 A ) )  =  y  <->  y  =  ( x  mod  ( O `
 A ) ) )
4543, 44syl6bb 265 . . . . . . . . . . . . 13  |-  ( ( ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  /\  x  e.  ZZ )  /\  y  e.  ( 0 ... (
( O `  A
)  -  1 ) ) )  ->  (
( x  mod  ( O `  A )
)  =  ( y  mod  ( O `  A ) )  <->  y  =  ( x  mod  ( O `
 A ) ) ) )
46 simp-4l 776 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  /\  x  e.  ZZ )  /\  y  e.  ( 0 ... (
( O `  A
)  -  1 ) ) )  ->  G  e.  Grp )
47 simp-4r 777 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  /\  x  e.  ZZ )  /\  y  e.  ( 0 ... (
( O `  A
)  -  1 ) ) )  ->  A  e.  X )
48 odf1.2 . . . . . . . . . . . . . . 15  |-  O  =  ( od `  G
)
49 eqid 2451 . . . . . . . . . . . . . . 15  |-  ( 0g
`  G )  =  ( 0g `  G
)
502, 48, 3, 49odcong 17198 . . . . . . . . . . . . . 14  |-  ( ( G  e.  Grp  /\  A  e.  X  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  ( ( O `  A )  ||  ( x  -  y
)  <->  ( x  .x.  A )  =  ( y  .x.  A ) ) )
5146, 47, 26, 27, 50syl112anc 1272 . . . . . . . . . . . . 13  |-  ( ( ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  /\  x  e.  ZZ )  /\  y  e.  ( 0 ... (
( O `  A
)  -  1 ) ) )  ->  (
( O `  A
)  ||  ( x  -  y )  <->  ( x  .x.  A )  =  ( y  .x.  A ) ) )
5229, 45, 513bitr3rd 288 . . . . . . . . . . . 12  |-  ( ( ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  /\  x  e.  ZZ )  /\  y  e.  ( 0 ... (
( O `  A
)  -  1 ) ) )  ->  (
( x  .x.  A
)  =  ( y 
.x.  A )  <->  y  =  ( x  mod  ( O `
 A ) ) ) )
5352ralrimiva 2802 . . . . . . . . . . 11  |-  ( ( ( ( G  e. 
Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  /\  x  e.  ZZ )  ->  A. y  e.  ( 0 ... (
( O `  A
)  -  1 ) ) ( ( x 
.x.  A )  =  ( y  .x.  A
)  <->  y  =  ( x  mod  ( O `
 A ) ) ) )
54 reu6i 3229 . . . . . . . . . . 11  |-  ( ( ( x  mod  ( O `  A )
)  e.  ( 0 ... ( ( O `
 A )  - 
1 ) )  /\  A. y  e.  ( 0 ... ( ( O `
 A )  - 
1 ) ) ( ( x  .x.  A
)  =  ( y 
.x.  A )  <->  y  =  ( x  mod  ( O `
 A ) ) ) )  ->  E! y  e.  ( 0 ... ( ( O `
 A )  - 
1 ) ) ( x  .x.  A )  =  ( y  .x.  A ) )
5524, 53, 54syl2anc 667 . . . . . . . . . 10  |-  ( ( ( ( G  e. 
Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  /\  x  e.  ZZ )  ->  E! y  e.  ( 0 ... ( ( O `
 A )  - 
1 ) ) ( x  .x.  A )  =  ( y  .x.  A ) )
5655ralrimiva 2802 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  ->  A. x  e.  ZZ  E! y  e.  (
0 ... ( ( O `
 A )  - 
1 ) ) ( x  .x.  A )  =  ( y  .x.  A ) )
57 ovex 6318 . . . . . . . . . . 11  |-  ( x 
.x.  A )  e. 
_V
5857rgenw 2749 . . . . . . . . . 10  |-  A. x  e.  ZZ  ( x  .x.  A )  e.  _V
59 eqeq1 2455 . . . . . . . . . . . 12  |-  ( z  =  ( x  .x.  A )  ->  (
z  =  ( y 
.x.  A )  <->  ( x  .x.  A )  =  ( y  .x.  A ) ) )
6059reubidv 2975 . . . . . . . . . . 11  |-  ( z  =  ( x  .x.  A )  ->  ( E! y  e.  (
0 ... ( ( O `
 A )  - 
1 ) ) z  =  ( y  .x.  A )  <->  E! y  e.  ( 0 ... (
( O `  A
)  -  1 ) ) ( x  .x.  A )  =  ( y  .x.  A ) ) )
618, 60ralrnmpt 6031 . . . . . . . . . 10  |-  ( A. x  e.  ZZ  (
x  .x.  A )  e.  _V  ->  ( A. z  e.  ran  F E! y  e.  ( 0 ... ( ( O `
 A )  - 
1 ) ) z  =  ( y  .x.  A )  <->  A. x  e.  ZZ  E! y  e.  ( 0 ... (
( O `  A
)  -  1 ) ) ( x  .x.  A )  =  ( y  .x.  A ) ) )
6258, 61ax-mp 5 . . . . . . . . 9  |-  ( A. z  e.  ran  F E! y  e.  ( 0 ... ( ( O `
 A )  - 
1 ) ) z  =  ( y  .x.  A )  <->  A. x  e.  ZZ  E! y  e.  ( 0 ... (
( O `  A
)  -  1 ) ) ( x  .x.  A )  =  ( y  .x.  A ) )
6356, 62sylibr 216 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  ->  A. z  e.  ran  F E! y  e.  ( 0 ... ( ( O `  A )  -  1 ) ) z  =  ( y 
.x.  A ) )
64 eqid 2451 . . . . . . . . 9  |-  ( y  e.  ( 0 ... ( ( O `  A )  -  1 ) )  |->  ( y 
.x.  A ) )  =  ( y  e.  ( 0 ... (
( O `  A
)  -  1 ) )  |->  ( y  .x.  A ) )
6564f1ompt 6044 . . . . . . . 8  |-  ( ( y  e.  ( 0 ... ( ( O `
 A )  - 
1 ) )  |->  ( y  .x.  A ) ) : ( 0 ... ( ( O `
 A )  - 
1 ) ) -1-1-onto-> ran  F  <->  ( A. y  e.  ( 0 ... ( ( O `  A )  -  1 ) ) ( y  .x.  A
)  e.  ran  F  /\  A. z  e.  ran  F E! y  e.  ( 0 ... ( ( O `  A )  -  1 ) ) z  =  ( y 
.x.  A ) ) )
6621, 63, 65sylanbrc 670 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  ->  ( y  e.  ( 0 ... (
( O `  A
)  -  1 ) )  |->  ( y  .x.  A ) ) : ( 0 ... (
( O `  A
)  -  1 ) ) -1-1-onto-> ran  F )
67 f1oen2g 7586 . . . . . . 7  |-  ( ( ( 0 ... (
( O `  A
)  -  1 ) )  e.  Fin  /\  ran  F  e.  _V  /\  ( y  e.  ( 0 ... ( ( O `  A )  -  1 ) ) 
|->  ( y  .x.  A
) ) : ( 0 ... ( ( O `  A )  -  1 ) ) -1-1-onto-> ran 
F )  ->  (
0 ... ( ( O `
 A )  - 
1 ) )  ~~  ran  F )
681, 14, 66, 67syl3anc 1268 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  ->  ( 0 ... ( ( O `  A )  -  1 ) )  ~~  ran  F )
69 enfi 7788 . . . . . 6  |-  ( ( 0 ... ( ( O `  A )  -  1 ) ) 
~~  ran  F  ->  ( ( 0 ... (
( O `  A
)  -  1 ) )  e.  Fin  <->  ran  F  e. 
Fin ) )
7068, 69syl 17 . . . . 5  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  ->  ( ( 0 ... ( ( O `
 A )  - 
1 ) )  e. 
Fin 
<->  ran  F  e.  Fin ) )
711, 70mpbid 214 . . . 4  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  ->  ran  F  e.  Fin )
7271iftrued 3889 . . 3  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  ->  if ( ran 
F  e.  Fin , 
( # `  ran  F
) ,  0 )  =  ( # `  ran  F ) )
73 fz01en 11827 . . . . . 6  |-  ( ( O `  A )  e.  ZZ  ->  (
0 ... ( ( O `
 A )  - 
1 ) )  ~~  ( 1 ... ( O `  A )
) )
74 ensym 7618 . . . . . 6  |-  ( ( 0 ... ( ( O `  A )  -  1 ) ) 
~~  ( 1 ... ( O `  A
) )  ->  (
1 ... ( O `  A ) )  ~~  ( 0 ... (
( O `  A
)  -  1 ) ) )
7534, 73, 743syl 18 . . . . 5  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  ->  ( 1 ... ( O `  A
) )  ~~  (
0 ... ( ( O `
 A )  - 
1 ) ) )
76 entr 7621 . . . . 5  |-  ( ( ( 1 ... ( O `  A )
)  ~~  ( 0 ... ( ( O `
 A )  - 
1 ) )  /\  ( 0 ... (
( O `  A
)  -  1 ) )  ~~  ran  F
)  ->  ( 1 ... ( O `  A ) )  ~~  ran  F )
7775, 68, 76syl2anc 667 . . . 4  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  ->  ( 1 ... ( O `  A
) )  ~~  ran  F )
78 fzfid 12186 . . . . 5  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  ->  ( 1 ... ( O `  A
) )  e.  Fin )
79 hashen 12530 . . . . 5  |-  ( ( ( 1 ... ( O `  A )
)  e.  Fin  /\  ran  F  e.  Fin )  ->  ( ( # `  (
1 ... ( O `  A ) ) )  =  ( # `  ran  F )  <->  ( 1 ... ( O `  A
) )  ~~  ran  F ) )
8078, 71, 79syl2anc 667 . . . 4  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  ->  ( ( # `  ( 1 ... ( O `  A )
) )  =  (
# `  ran  F )  <-> 
( 1 ... ( O `  A )
)  ~~  ran  F ) )
8177, 80mpbird 236 . . 3  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  ->  ( # `  (
1 ... ( O `  A ) ) )  =  ( # `  ran  F ) )
82 nnnn0 10876 . . . . 5  |-  ( ( O `  A )  e.  NN  ->  ( O `  A )  e.  NN0 )
8382adantl 468 . . . 4  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  ->  ( O `  A )  e.  NN0 )
84 hashfz1 12529 . . . 4  |-  ( ( O `  A )  e.  NN0  ->  ( # `  ( 1 ... ( O `  A )
) )  =  ( O `  A ) )
8583, 84syl 17 . . 3  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  ->  ( # `  (
1 ... ( O `  A ) ) )  =  ( O `  A ) )
8672, 81, 853eqtr2rd 2492 . 2  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( O `  A )  e.  NN )  ->  ( O `  A )  =  if ( ran  F  e. 
Fin ,  ( # `  ran  F ) ,  0 ) )
87 simp3 1010 . . . 4  |-  ( ( G  e.  Grp  /\  A  e.  X  /\  ( O `  A )  =  0 )  -> 
( O `  A
)  =  0 )
882, 48, 3, 8odinf 17214 . . . . 5  |-  ( ( G  e.  Grp  /\  A  e.  X  /\  ( O `  A )  =  0 )  ->  -.  ran  F  e.  Fin )
8988iffalsed 3892 . . . 4  |-  ( ( G  e.  Grp  /\  A  e.  X  /\  ( O `  A )  =  0 )  ->  if ( ran  F  e. 
Fin ,  ( # `  ran  F ) ,  0 )  =  0 )
9087, 89eqtr4d 2488 . . 3  |-  ( ( G  e.  Grp  /\  A  e.  X  /\  ( O `  A )  =  0 )  -> 
( O `  A
)  =  if ( ran  F  e.  Fin ,  ( # `  ran  F ) ,  0 ) )
91903expa 1208 . 2  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( O `  A )  =  0 )  ->  ( O `  A )  =  if ( ran  F  e. 
Fin ,  ( # `  ran  F ) ,  0 ) )
922, 48odcl 17185 . . . 4  |-  ( A  e.  X  ->  ( O `  A )  e.  NN0 )
9392adantl 468 . . 3  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  ( O `  A
)  e.  NN0 )
94 elnn0 10871 . . 3  |-  ( ( O `  A )  e.  NN0  <->  ( ( O `
 A )  e.  NN  \/  ( O `
 A )  =  0 ) )
9593, 94sylib 200 . 2  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  ( ( O `  A )  e.  NN  \/  ( O `  A
)  =  0 ) )
9686, 91, 95mpjaodan 795 1  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  ( O `  A
)  =  if ( ran  F  e.  Fin ,  ( # `  ran  F ) ,  0 ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 188    \/ wo 370    /\ wa 371    /\ w3a 985    = wceq 1444    e. wcel 1887   A.wral 2737   E!wreu 2739   _Vcvv 3045    C_ wss 3404   ifcif 3881   class class class wbr 4402    |-> cmpt 4461   ran crn 4835   -->wf 5578   -1-1-onto->wf1o 5581   ` cfv 5582  (class class class)co 6290    ~~ cen 7566   Fincfn 7569   RRcr 9538   0cc0 9539   1c1 9540    < clt 9675    <_ cle 9676    - cmin 9860   NNcn 10609   NN0cn0 10869   ZZcz 10937   RR+crp 11302   ...cfz 11784    mod cmo 12096   #chash 12515    || cdvds 14305   Basecbs 15121   0gc0g 15338   Grpcgrp 16669  .gcmg 16672   odcod 17165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-8 1889  ax-9 1896  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431  ax-rep 4515  ax-sep 4525  ax-nul 4534  ax-pow 4581  ax-pr 4639  ax-un 6583  ax-inf2 8146  ax-cnex 9595  ax-resscn 9596  ax-1cn 9597  ax-icn 9598  ax-addcl 9599  ax-addrcl 9600  ax-mulcl 9601  ax-mulrcl 9602  ax-mulcom 9603  ax-addass 9604  ax-mulass 9605  ax-distr 9606  ax-i2m1 9607  ax-1ne0 9608  ax-1rid 9609  ax-rnegex 9610  ax-rrecex 9611  ax-cnre 9612  ax-pre-lttri 9613  ax-pre-lttrn 9614  ax-pre-ltadd 9615  ax-pre-mulgt0 9616  ax-pre-sup 9617
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 986  df-3an 987  df-tru 1447  df-ex 1664  df-nf 1668  df-sb 1798  df-eu 2303  df-mo 2304  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2624  df-nel 2625  df-ral 2742  df-rex 2743  df-reu 2744  df-rmo 2745  df-rab 2746  df-v 3047  df-sbc 3268  df-csb 3364  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-pss 3420  df-nul 3732  df-if 3882  df-pw 3953  df-sn 3969  df-pr 3971  df-tp 3973  df-op 3975  df-uni 4199  df-int 4235  df-iun 4280  df-br 4403  df-opab 4462  df-mpt 4463  df-tr 4498  df-eprel 4745  df-id 4749  df-po 4755  df-so 4756  df-fr 4793  df-se 4794  df-we 4795  df-xp 4840  df-rel 4841  df-cnv 4842  df-co 4843  df-dm 4844  df-rn 4845  df-res 4846  df-ima 4847  df-pred 5380  df-ord 5426  df-on 5427  df-lim 5428  df-suc 5429  df-iota 5546  df-fun 5584  df-fn 5585  df-f 5586  df-f1 5587  df-fo 5588  df-f1o 5589  df-fv 5590  df-isom 5591  df-riota 6252  df-ov 6293  df-oprab 6294  df-mpt2 6295  df-om 6693  df-1st 6793  df-2nd 6794  df-wrecs 7028  df-recs 7090  df-rdg 7128  df-1o 7182  df-oadd 7186  df-omul 7187  df-er 7363  df-map 7474  df-en 7570  df-dom 7571  df-sdom 7572  df-fin 7573  df-sup 7956  df-inf 7957  df-oi 8025  df-card 8373  df-acn 8376  df-pnf 9677  df-mnf 9678  df-xr 9679  df-ltxr 9680  df-le 9681  df-sub 9862  df-neg 9863  df-div 10270  df-nn 10610  df-2 10668  df-3 10669  df-n0 10870  df-z 10938  df-uz 11160  df-rp 11303  df-fz 11785  df-fl 12028  df-mod 12097  df-seq 12214  df-exp 12273  df-hash 12516  df-cj 13162  df-re 13163  df-im 13164  df-sqrt 13298  df-abs 13299  df-dvds 14306  df-0g 15340  df-mgm 16488  df-sgrp 16527  df-mnd 16537  df-grp 16673  df-minusg 16674  df-sbg 16675  df-mulg 16676  df-od 17172
This theorem is referenced by:  oddvds2  17217  cyggenod  17519  cyggenod2  17520
  Copyright terms: Public domain W3C validator