Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfnul3 Structured version   Unicode version

Theorem dfnul3 3770
 Description: Alternate definition of the empty set. (Contributed by NM, 25-Mar-2004.)
Assertion
Ref Expression
dfnul3

Proof of Theorem dfnul3
StepHypRef Expression
1 pm3.24 880 . . . . 5
2 equid 1775 . . . . 5
31, 22th 239 . . . 4
43con1bii 331 . . 3
54abbii 2575 . 2
6 dfnul2 3769 . 2
7 df-rab 2800 . 2
85, 6, 73eqtr4i 2480 1
 Colors of variables: wff setvar class Syntax hints:   wn 3   wa 369   wceq 1381   wcel 1802  cab 2426  crab 2795  c0 3767 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1603  ax-4 1616  ax-5 1689  ax-6 1732  ax-7 1774  ax-10 1821  ax-11 1826  ax-12 1838  ax-13 1983  ax-ext 2419 This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1384  df-ex 1598  df-nf 1602  df-sb 1725  df-clab 2427  df-cleq 2433  df-clel 2436  df-nfc 2591  df-rab 2800  df-v 3095  df-dif 3461  df-nul 3768 This theorem is referenced by:  difidALT  3879  kmlem3  8530
 Copyright terms: Public domain W3C validator