MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfnn3 Structured version   Unicode version

Theorem dfnn3 10546
Description: Alternate definition of the set of positive integers. Definition of positive integers in [Apostol] p. 22. (Contributed by NM, 3-Jul-2005.)
Assertion
Ref Expression
dfnn3  |-  NN  =  |^| { x  |  ( x  C_  RR  /\  1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }
Distinct variable group:    x, y

Proof of Theorem dfnn3
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 eleq2 2540 . . . 4  |-  ( x  =  z  ->  (
1  e.  x  <->  1  e.  z ) )
2 eleq2 2540 . . . . 5  |-  ( x  =  z  ->  (
( y  +  1 )  e.  x  <->  ( y  +  1 )  e.  z ) )
32raleqbi1dv 3066 . . . 4  |-  ( x  =  z  ->  ( A. y  e.  x  ( y  +  1 )  e.  x  <->  A. y  e.  z  ( y  +  1 )  e.  z ) )
41, 3anbi12d 710 . . 3  |-  ( x  =  z  ->  (
( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x )  <-> 
( 1  e.  z  /\  A. y  e.  z  ( y  +  1 )  e.  z ) ) )
5 dfnn2 10545 . . . . 5  |-  NN  =  |^| { z  |  ( 1  e.  z  /\  A. y  e.  z  ( y  +  1 )  e.  z ) }
65eqeq2i 2485 . . . 4  |-  ( x  =  NN  <->  x  =  |^| { z  |  ( 1  e.  z  /\  A. y  e.  z  ( y  +  1 )  e.  z ) } )
7 eleq2 2540 . . . . 5  |-  ( x  =  NN  ->  (
1  e.  x  <->  1  e.  NN ) )
8 eleq2 2540 . . . . . 6  |-  ( x  =  NN  ->  (
( y  +  1 )  e.  x  <->  ( y  +  1 )  e.  NN ) )
98raleqbi1dv 3066 . . . . 5  |-  ( x  =  NN  ->  ( A. y  e.  x  ( y  +  1 )  e.  x  <->  A. y  e.  NN  ( y  +  1 )  e.  NN ) )
107, 9anbi12d 710 . . . 4  |-  ( x  =  NN  ->  (
( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x )  <-> 
( 1  e.  NN  /\ 
A. y  e.  NN  ( y  +  1 )  e.  NN ) ) )
116, 10sylbir 213 . . 3  |-  ( x  =  |^| { z  |  ( 1  e.  z  /\  A. y  e.  z  ( y  +  1 )  e.  z ) }  ->  ( ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x )  <-> 
( 1  e.  NN  /\ 
A. y  e.  NN  ( y  +  1 )  e.  NN ) ) )
12 nnssre 10536 . . . . 5  |-  NN  C_  RR
135, 12eqsstr3i 3535 . . . 4  |-  |^| { z  |  ( 1  e.  z  /\  A. y  e.  z  ( y  +  1 )  e.  z ) }  C_  RR
14 1nn 10543 . . . . 5  |-  1  e.  NN
15 peano2nn 10544 . . . . . 6  |-  ( y  e.  NN  ->  (
y  +  1 )  e.  NN )
1615rgen 2824 . . . . 5  |-  A. y  e.  NN  ( y  +  1 )  e.  NN
1714, 16pm3.2i 455 . . . 4  |-  ( 1  e.  NN  /\  A. y  e.  NN  (
y  +  1 )  e.  NN )
1813, 17pm3.2i 455 . . 3  |-  ( |^| { z  |  ( 1  e.  z  /\  A. y  e.  z  (
y  +  1 )  e.  z ) } 
C_  RR  /\  (
1  e.  NN  /\  A. y  e.  NN  (
y  +  1 )  e.  NN ) )
194, 11, 18intabs 4608 . 2  |-  |^| { x  |  ( x  C_  RR  /\  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) ) }  =  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }
20 3anass 977 . . . 4  |-  ( ( x  C_  RR  /\  1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x )  <->  ( x  C_  RR  /\  ( 1  e.  x  /\  A. y  e.  x  (
y  +  1 )  e.  x ) ) )
2120abbii 2601 . . 3  |-  { x  |  ( x  C_  RR  /\  1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }  =  { x  |  ( x  C_  RR  /\  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) ) }
2221inteqi 4286 . 2  |-  |^| { x  |  ( x  C_  RR  /\  1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }  =  |^| { x  |  ( x  C_  RR  /\  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) ) }
23 dfnn2 10545 . 2  |-  NN  =  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }
2419, 22, 233eqtr4ri 2507 1  |-  NN  =  |^| { x  |  ( x  C_  RR  /\  1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   {cab 2452   A.wral 2814    C_ wss 3476   |^|cint 4282  (class class class)co 6282   RRcr 9487   1c1 9489    + caddc 9491   NNcn 10532
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-cnex 9544  ax-resscn 9545  ax-1cn 9546  ax-icn 9547  ax-addcl 9548  ax-addrcl 9549  ax-mulcl 9550  ax-mulrcl 9551  ax-i2m1 9556  ax-1ne0 9557  ax-rrecex 9560  ax-cnre 9561
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-ov 6285  df-om 6679  df-recs 7039  df-rdg 7073  df-nn 10533
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator