MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfnn2 Structured version   Visualization version   Unicode version

Theorem dfnn2 10655
Description: Alternate definition of the set of positive integers. This was our original definition, before the current df-nn 10643 replaced it. This definition requires the axiom of infinity to ensure it has the properties we expect. (Contributed by Jeff Hankins, 12-Sep-2013.) (Revised by Mario Carneiro, 3-May-2014.)
Assertion
Ref Expression
dfnn2  |-  NN  =  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }
Distinct variable group:    x, y

Proof of Theorem dfnn2
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 1ex 9669 . . . . 5  |-  1  e.  _V
21elintab 4259 . . . 4  |-  ( 1  e.  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }  <->  A. x ( ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x )  -> 
1  e.  x ) )
3 simpl 463 . . . 4  |-  ( ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x )  -> 
1  e.  x )
42, 3mpgbir 1684 . . 3  |-  1  e.  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }
5 oveq1 6327 . . . . . . . . . 10  |-  ( y  =  z  ->  (
y  +  1 )  =  ( z  +  1 ) )
65eleq1d 2524 . . . . . . . . 9  |-  ( y  =  z  ->  (
( y  +  1 )  e.  x  <->  ( z  +  1 )  e.  x ) )
76rspccv 3159 . . . . . . . 8  |-  ( A. y  e.  x  (
y  +  1 )  e.  x  ->  (
z  e.  x  -> 
( z  +  1 )  e.  x ) )
87adantl 472 . . . . . . 7  |-  ( ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x )  -> 
( z  e.  x  ->  ( z  +  1 )  e.  x ) )
98a2i 14 . . . . . 6  |-  ( ( ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x )  ->  z  e.  x
)  ->  ( (
1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x )  -> 
( z  +  1 )  e.  x ) )
109alimi 1695 . . . . 5  |-  ( A. x ( ( 1  e.  x  /\  A. y  e.  x  (
y  +  1 )  e.  x )  -> 
z  e.  x )  ->  A. x ( ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x )  -> 
( z  +  1 )  e.  x ) )
11 vex 3060 . . . . . 6  |-  z  e. 
_V
1211elintab 4259 . . . . 5  |-  ( z  e.  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }  <->  A. x ( ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x )  -> 
z  e.  x ) )
13 ovex 6348 . . . . . 6  |-  ( z  +  1 )  e. 
_V
1413elintab 4259 . . . . 5  |-  ( ( z  +  1 )  e.  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }  <->  A. x ( ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x )  -> 
( z  +  1 )  e.  x ) )
1510, 12, 143imtr4i 274 . . . 4  |-  ( z  e.  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }  ->  ( z  +  1 )  e. 
|^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) } )
1615rgen 2759 . . 3  |-  A. z  e.  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }  ( z  +  1 )  e.  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  (
y  +  1 )  e.  x ) }
17 peano5nni 10645 . . 3  |-  ( ( 1  e.  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }  /\  A. z  e.  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }  (
z  +  1 )  e.  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) } )  ->  NN  C_ 
|^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) } )
184, 16, 17mp2an 683 . 2  |-  NN  C_  |^|
{ x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }
19 1nn 10653 . . . 4  |-  1  e.  NN
20 peano2nn 10654 . . . . 5  |-  ( y  e.  NN  ->  (
y  +  1 )  e.  NN )
2120rgen 2759 . . . 4  |-  A. y  e.  NN  ( y  +  1 )  e.  NN
22 nnex 10648 . . . . 5  |-  NN  e.  _V
23 eleq2 2529 . . . . . 6  |-  ( x  =  NN  ->  (
1  e.  x  <->  1  e.  NN ) )
24 eleq2 2529 . . . . . . 7  |-  ( x  =  NN  ->  (
( y  +  1 )  e.  x  <->  ( y  +  1 )  e.  NN ) )
2524raleqbi1dv 3007 . . . . . 6  |-  ( x  =  NN  ->  ( A. y  e.  x  ( y  +  1 )  e.  x  <->  A. y  e.  NN  ( y  +  1 )  e.  NN ) )
2623, 25anbi12d 722 . . . . 5  |-  ( x  =  NN  ->  (
( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x )  <-> 
( 1  e.  NN  /\ 
A. y  e.  NN  ( y  +  1 )  e.  NN ) ) )
2722, 26elab 3197 . . . 4  |-  ( NN  e.  { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }  <->  ( 1  e.  NN  /\  A. y  e.  NN  ( y  +  1 )  e.  NN ) )
2819, 21, 27mpbir2an 936 . . 3  |-  NN  e.  { x  |  ( 1  e.  x  /\  A. y  e.  x  (
y  +  1 )  e.  x ) }
29 intss1 4263 . . 3  |-  ( NN  e.  { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }  ->  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }  C_  NN )
3028, 29ax-mp 5 . 2  |-  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }  C_  NN
3118, 30eqssi 3460 1  |-  NN  =  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 375   A.wal 1453    = wceq 1455    e. wcel 1898   {cab 2448   A.wral 2749    C_ wss 3416   |^|cint 4248  (class class class)co 6320   1c1 9571    + caddc 9573   NNcn 10642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1680  ax-4 1693  ax-5 1769  ax-6 1816  ax-7 1862  ax-8 1900  ax-9 1907  ax-10 1926  ax-11 1931  ax-12 1944  ax-13 2102  ax-ext 2442  ax-sep 4541  ax-nul 4550  ax-pow 4598  ax-pr 4656  ax-un 6615  ax-cnex 9626  ax-resscn 9627  ax-1cn 9628  ax-icn 9629  ax-addcl 9630  ax-addrcl 9631  ax-mulcl 9632  ax-mulrcl 9633  ax-i2m1 9638  ax-1ne0 9639  ax-rrecex 9642  ax-cnre 9643
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-3or 992  df-3an 993  df-tru 1458  df-ex 1675  df-nf 1679  df-sb 1809  df-eu 2314  df-mo 2315  df-clab 2449  df-cleq 2455  df-clel 2458  df-nfc 2592  df-ne 2635  df-ral 2754  df-rex 2755  df-reu 2756  df-rab 2758  df-v 3059  df-sbc 3280  df-csb 3376  df-dif 3419  df-un 3421  df-in 3423  df-ss 3430  df-pss 3432  df-nul 3744  df-if 3894  df-pw 3965  df-sn 3981  df-pr 3983  df-tp 3985  df-op 3987  df-uni 4213  df-int 4249  df-iun 4294  df-br 4419  df-opab 4478  df-mpt 4479  df-tr 4514  df-eprel 4767  df-id 4771  df-po 4777  df-so 4778  df-fr 4815  df-we 4817  df-xp 4862  df-rel 4863  df-cnv 4864  df-co 4865  df-dm 4866  df-rn 4867  df-res 4868  df-ima 4869  df-pred 5403  df-ord 5449  df-on 5450  df-lim 5451  df-suc 5452  df-iota 5569  df-fun 5607  df-fn 5608  df-f 5609  df-f1 5610  df-fo 5611  df-f1o 5612  df-fv 5613  df-ov 6323  df-om 6725  df-wrecs 7059  df-recs 7121  df-rdg 7159  df-nn 10643
This theorem is referenced by:  dfnn3  10656
  Copyright terms: Public domain W3C validator