MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfiun2g Structured version   Unicode version

Theorem dfiun2g 4357
Description: Alternate definition of indexed union when  B is a set. Definition 15(a) of [Suppes] p. 44. (Contributed by NM, 23-Mar-2006.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
dfiun2g  |-  ( A. x  e.  A  B  e.  C  ->  U_ x  e.  A  B  =  U. { y  |  E. x  e.  A  y  =  B } )
Distinct variable groups:    y, A    y, B    x, y
Allowed substitution hints:    A( x)    B( x)    C( x, y)

Proof of Theorem dfiun2g
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 nfra1 2845 . . . . . 6  |-  F/ x A. x  e.  A  B  e.  C
2 rsp 2830 . . . . . . . 8  |-  ( A. x  e.  A  B  e.  C  ->  ( x  e.  A  ->  B  e.  C ) )
3 clel3g 3241 . . . . . . . 8  |-  ( B  e.  C  ->  (
z  e.  B  <->  E. y
( y  =  B  /\  z  e.  y ) ) )
42, 3syl6 33 . . . . . . 7  |-  ( A. x  e.  A  B  e.  C  ->  ( x  e.  A  ->  (
z  e.  B  <->  E. y
( y  =  B  /\  z  e.  y ) ) ) )
54imp 429 . . . . . 6  |-  ( ( A. x  e.  A  B  e.  C  /\  x  e.  A )  ->  ( z  e.  B  <->  E. y ( y  =  B  /\  z  e.  y ) ) )
61, 5rexbida 2968 . . . . 5  |-  ( A. x  e.  A  B  e.  C  ->  ( E. x  e.  A  z  e.  B  <->  E. x  e.  A  E. y
( y  =  B  /\  z  e.  y ) ) )
7 rexcom4 3133 . . . . 5  |-  ( E. x  e.  A  E. y ( y  =  B  /\  z  e.  y )  <->  E. y E. x  e.  A  ( y  =  B  /\  z  e.  y ) )
86, 7syl6bb 261 . . . 4  |-  ( A. x  e.  A  B  e.  C  ->  ( E. x  e.  A  z  e.  B  <->  E. y E. x  e.  A  ( y  =  B  /\  z  e.  y ) ) )
9 r19.41v 3014 . . . . . 6  |-  ( E. x  e.  A  ( y  =  B  /\  z  e.  y )  <->  ( E. x  e.  A  y  =  B  /\  z  e.  y )
)
109exbii 1644 . . . . 5  |-  ( E. y E. x  e.  A  ( y  =  B  /\  z  e.  y )  <->  E. y
( E. x  e.  A  y  =  B  /\  z  e.  y ) )
11 exancom 1648 . . . . 5  |-  ( E. y ( E. x  e.  A  y  =  B  /\  z  e.  y )  <->  E. y ( z  e.  y  /\  E. x  e.  A  y  =  B ) )
1210, 11bitri 249 . . . 4  |-  ( E. y E. x  e.  A  ( y  =  B  /\  z  e.  y )  <->  E. y
( z  e.  y  /\  E. x  e.  A  y  =  B ) )
138, 12syl6bb 261 . . 3  |-  ( A. x  e.  A  B  e.  C  ->  ( E. x  e.  A  z  e.  B  <->  E. y
( z  e.  y  /\  E. x  e.  A  y  =  B ) ) )
14 eliun 4330 . . 3  |-  ( z  e.  U_ x  e.  A  B  <->  E. x  e.  A  z  e.  B )
15 eluniab 4256 . . 3  |-  ( z  e.  U. { y  |  E. x  e.  A  y  =  B }  <->  E. y ( z  e.  y  /\  E. x  e.  A  y  =  B ) )
1613, 14, 153bitr4g 288 . 2  |-  ( A. x  e.  A  B  e.  C  ->  ( z  e.  U_ x  e.  A  B  <->  z  e.  U. { y  |  E. x  e.  A  y  =  B } ) )
1716eqrdv 2464 1  |-  ( A. x  e.  A  B  e.  C  ->  U_ x  e.  A  B  =  U. { y  |  E. x  e.  A  y  =  B } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379   E.wex 1596    e. wcel 1767   {cab 2452   A.wral 2814   E.wrex 2815   U.cuni 4245   U_ciun 4325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ral 2819  df-rex 2820  df-v 3115  df-uni 4246  df-iun 4327
This theorem is referenced by:  dfiun2  4359  dfiun3g  5255  iunexg  6760  uniqs  7371  ac6num  8859  iunopn  19202  pnrmopn  19638  cncmp  19686  ptcmplem3  20317  iunmbl  21726  voliun  21727  sigaclcuni  27786  sigaclcu2  27788  sigaclci  27800  measvunilem  27851  meascnbl  27858
  Copyright terms: Public domain W3C validator