Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfimafn2 Structured version   Unicode version

Theorem dfimafn2 5923
 Description: Alternate definition of the image of a function as an indexed union of singletons of function values. (Contributed by Raph Levien, 20-Nov-2006.)
Assertion
Ref Expression
dfimafn2
Distinct variable groups:   ,   ,

Proof of Theorem dfimafn2
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 dfimafn 5922 . . 3
2 iunab 4378 . . 3
31, 2syl6eqr 2516 . 2
4 df-sn 4033 . . . . 5
5 eqcom 2466 . . . . . 6
65abbii 2591 . . . . 5
74, 6eqtri 2486 . . . 4
87a1i 11 . . 3
98iuneq2i 4351 . 2
103, 9syl6eqr 2516 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wa 369   wceq 1395   wcel 1819  cab 2442  wrex 2808   wss 3471  csn 4032  ciun 4332   cdm 5008  cima 5011   wfun 5588  cfv 5594 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pr 4695 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-sbc 3328  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3794  df-if 3945  df-sn 4033  df-pr 4035  df-op 4039  df-uni 4252  df-iun 4334  df-br 4457  df-opab 4516  df-id 4804  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-fv 5602 This theorem is referenced by:  uniiccdif  22112
 Copyright terms: Public domain W3C validator