MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfimafn Structured version   Unicode version

Theorem dfimafn 5914
Description: Alternate definition of the image of a function. (Contributed by Raph Levien, 20-Nov-2006.)
Assertion
Ref Expression
dfimafn  |-  ( ( Fun  F  /\  A  C_ 
dom  F )  -> 
( F " A
)  =  { y  |  E. x  e.  A  ( F `  x )  =  y } )
Distinct variable groups:    x, y, A    x, F, y

Proof of Theorem dfimafn
StepHypRef Expression
1 ssel 3498 . . . . . 6  |-  ( A 
C_  dom  F  ->  ( x  e.  A  ->  x  e.  dom  F ) )
2 funbrfvb 5908 . . . . . . 7  |-  ( ( Fun  F  /\  x  e.  dom  F )  -> 
( ( F `  x )  =  y  <-> 
x F y ) )
32ex 434 . . . . . 6  |-  ( Fun 
F  ->  ( x  e.  dom  F  ->  (
( F `  x
)  =  y  <->  x F
y ) ) )
41, 3syl9r 72 . . . . 5  |-  ( Fun 
F  ->  ( A  C_ 
dom  F  ->  ( x  e.  A  ->  (
( F `  x
)  =  y  <->  x F
y ) ) ) )
54imp31 432 . . . 4  |-  ( ( ( Fun  F  /\  A  C_  dom  F )  /\  x  e.  A
)  ->  ( ( F `  x )  =  y  <->  x F y ) )
65rexbidva 2970 . . 3  |-  ( ( Fun  F  /\  A  C_ 
dom  F )  -> 
( E. x  e.  A  ( F `  x )  =  y  <->  E. x  e.  A  x F y ) )
76abbidv 2603 . 2  |-  ( ( Fun  F  /\  A  C_ 
dom  F )  ->  { y  |  E. x  e.  A  ( F `  x )  =  y }  =  { y  |  E. x  e.  A  x F y } )
8 dfima2 5337 . 2  |-  ( F
" A )  =  { y  |  E. x  e.  A  x F y }
97, 8syl6reqr 2527 1  |-  ( ( Fun  F  /\  A  C_ 
dom  F )  -> 
( F " A
)  =  { y  |  E. x  e.  A  ( F `  x )  =  y } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767   {cab 2452   E.wrex 2815    C_ wss 3476   class class class wbr 4447   dom cdm 4999   "cima 5002   Fun wfun 5580   ` cfv 5586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pr 4686
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-sbc 3332  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-br 4448  df-opab 4506  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-fv 5594
This theorem is referenced by:  dfimafn2  5915  fvelimab  5921  curry2ima  27198
  Copyright terms: Public domain W3C validator