MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfiin2 Structured version   Unicode version

Theorem dfiin2 4205
Description: Alternate definition of indexed intersection when  B is a set. Definition 15(b) of [Suppes] p. 44. (Contributed by NM, 28-Jun-1998.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Hypothesis
Ref Expression
dfiun2.1  |-  B  e. 
_V
Assertion
Ref Expression
dfiin2  |-  |^|_ x  e.  A  B  =  |^| { y  |  E. x  e.  A  y  =  B }
Distinct variable groups:    x, y    y, A    y, B
Allowed substitution hints:    A( x)    B( x)

Proof of Theorem dfiin2
StepHypRef Expression
1 dfiin2g 4203 . 2  |-  ( A. x  e.  A  B  e.  _V  ->  |^|_ x  e.  A  B  =  |^| { y  |  E. x  e.  A  y  =  B } )
2 dfiun2.1 . . 3  |-  B  e. 
_V
32a1i 11 . 2  |-  ( x  e.  A  ->  B  e.  _V )
41, 3mprg 2785 1  |-  |^|_ x  e.  A  B  =  |^| { y  |  E. x  e.  A  y  =  B }
Colors of variables: wff setvar class
Syntax hints:    = wceq 1369    e. wcel 1756   {cab 2429   E.wrex 2716   _Vcvv 2972   |^|cint 4128   |^|_ciin 4172
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ral 2720  df-rex 2721  df-v 2974  df-int 4129  df-iin 4174
This theorem is referenced by:  fniinfv  5750  scott0  8093  cfval2  8429  cflim3  8431  cflim2  8432  cfss  8434  hauscmplem  19009  ptbasfi  19154  dihglblem5  34943  dihglb2  34987
  Copyright terms: Public domain W3C validator