![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfiin2 | Structured version Visualization version Unicode version |
Description: Alternate definition of
indexed intersection when ![]() |
Ref | Expression |
---|---|
dfiun2.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
dfiin2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfiin2g 4324 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | dfiun2.1 |
. . 3
![]() ![]() ![]() ![]() | |
3 | 2 | a1i 11 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1, 3 | mprg 2762 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1679 ax-4 1692 ax-5 1768 ax-6 1815 ax-7 1861 ax-10 1925 ax-11 1930 ax-12 1943 ax-13 2101 ax-ext 2441 |
This theorem depends on definitions: df-bi 190 df-an 377 df-tru 1457 df-ex 1674 df-nf 1678 df-sb 1808 df-clab 2448 df-cleq 2454 df-clel 2457 df-nfc 2591 df-ral 2753 df-rex 2754 df-v 3058 df-int 4248 df-iin 4294 |
This theorem is referenced by: fniinfv 5946 scott0 8382 cfval2 8715 cflim3 8717 cflim2 8718 cfss 8720 hauscmplem 20469 ptbasfi 20644 dihglblem5 34910 dihglb2 34954 intima0 36283 |
Copyright terms: Public domain | W3C validator |