MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfif6 Structured version   Unicode version

Theorem dfif6 3942
Description: An alternate definition of the conditional operator df-if 3940 as a simple class abstraction. (Contributed by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
dfif6  |-  if (
ph ,  A ,  B )  =  ( { x  e.  A  |  ph }  u.  {
x  e.  B  |  -.  ph } )
Distinct variable groups:    ph, x    x, A    x, B

Proof of Theorem dfif6
StepHypRef Expression
1 unab 3765 . 2  |-  ( { x  |  ( x  e.  A  /\  ph ) }  u.  { x  |  ( x  e.  B  /\  -.  ph ) } )  =  {
x  |  ( ( x  e.  A  /\  ph )  \/  ( x  e.  B  /\  -.  ph ) ) }
2 df-rab 2823 . . 3  |-  { x  e.  A  |  ph }  =  { x  |  ( x  e.  A  /\  ph ) }
3 df-rab 2823 . . 3  |-  { x  e.  B  |  -.  ph }  =  { x  |  ( x  e.  B  /\  -.  ph ) }
42, 3uneq12i 3656 . 2  |-  ( { x  e.  A  |  ph }  u.  { x  e.  B  |  -.  ph } )  =  ( { x  |  ( x  e.  A  /\  ph ) }  u.  {
x  |  ( x  e.  B  /\  -.  ph ) } )
5 df-if 3940 . 2  |-  if (
ph ,  A ,  B )  =  {
x  |  ( ( x  e.  A  /\  ph )  \/  ( x  e.  B  /\  -.  ph ) ) }
61, 4, 53eqtr4ri 2507 1  |-  if (
ph ,  A ,  B )  =  ( { x  e.  A  |  ph }  u.  {
x  e.  B  |  -.  ph } )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    \/ wo 368    /\ wa 369    = wceq 1379    e. wcel 1767   {cab 2452   {crab 2818    u. cun 3474   ifcif 3939
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-rab 2823  df-v 3115  df-un 3481  df-if 3940
This theorem is referenced by:  ifeq1  3943  ifeq2  3944  dfif3  3953
  Copyright terms: Public domain W3C validator