MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dffun5 Unicode version

Theorem dffun5 5426
Description: Alternate definition of function. (Contributed by NM, 29-Dec-1996.)
Assertion
Ref Expression
dffun5  |-  ( Fun 
A  <->  ( Rel  A  /\  A. x E. z A. y ( <. x ,  y >.  e.  A  ->  y  =  z ) ) )
Distinct variable group:    x, y, z, A

Proof of Theorem dffun5
StepHypRef Expression
1 dffun3 5424 . 2  |-  ( Fun 
A  <->  ( Rel  A  /\  A. x E. z A. y ( x A y  ->  y  =  z ) ) )
2 df-br 4173 . . . . . . 7  |-  ( x A y  <->  <. x ,  y >.  e.  A
)
32imbi1i 316 . . . . . 6  |-  ( ( x A y  -> 
y  =  z )  <-> 
( <. x ,  y
>.  e.  A  ->  y  =  z ) )
43albii 1572 . . . . 5  |-  ( A. y ( x A y  ->  y  =  z )  <->  A. y
( <. x ,  y
>.  e.  A  ->  y  =  z ) )
54exbii 1589 . . . 4  |-  ( E. z A. y ( x A y  -> 
y  =  z )  <->  E. z A. y (
<. x ,  y >.  e.  A  ->  y  =  z ) )
65albii 1572 . . 3  |-  ( A. x E. z A. y
( x A y  ->  y  =  z )  <->  A. x E. z A. y ( <. x ,  y >.  e.  A  ->  y  =  z ) )
76anbi2i 676 . 2  |-  ( ( Rel  A  /\  A. x E. z A. y
( x A y  ->  y  =  z ) )  <->  ( Rel  A  /\  A. x E. z A. y ( <.
x ,  y >.  e.  A  ->  y  =  z ) ) )
81, 7bitri 241 1  |-  ( Fun 
A  <->  ( Rel  A  /\  A. x E. z A. y ( <. x ,  y >.  e.  A  ->  y  =  z ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359   A.wal 1546   E.wex 1547    e. wcel 1721   <.cop 3777   class class class wbr 4172   Rel wrel 4842   Fun wfun 5407
This theorem is referenced by:  funimaexg  5489  uzrdgfni  11253
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pr 4363
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rab 2675  df-v 2918  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-sn 3780  df-pr 3781  df-op 3783  df-br 4173  df-opab 4227  df-id 4458  df-cnv 4845  df-co 4846  df-fun 5415
  Copyright terms: Public domain W3C validator