MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dffun5 Structured version   Unicode version

Theorem dffun5 5614
Description: Alternate definition of function. (Contributed by NM, 29-Dec-1996.)
Assertion
Ref Expression
dffun5  |-  ( Fun 
A  <->  ( Rel  A  /\  A. x E. z A. y ( <. x ,  y >.  e.  A  ->  y  =  z ) ) )
Distinct variable group:    x, y, z, A

Proof of Theorem dffun5
StepHypRef Expression
1 dffun3 5612 . 2  |-  ( Fun 
A  <->  ( Rel  A  /\  A. x E. z A. y ( x A y  ->  y  =  z ) ) )
2 df-br 4424 . . . . . . 7  |-  ( x A y  <->  <. x ,  y >.  e.  A
)
32imbi1i 326 . . . . . 6  |-  ( ( x A y  -> 
y  =  z )  <-> 
( <. x ,  y
>.  e.  A  ->  y  =  z ) )
43albii 1685 . . . . 5  |-  ( A. y ( x A y  ->  y  =  z )  <->  A. y
( <. x ,  y
>.  e.  A  ->  y  =  z ) )
54exbii 1712 . . . 4  |-  ( E. z A. y ( x A y  -> 
y  =  z )  <->  E. z A. y (
<. x ,  y >.  e.  A  ->  y  =  z ) )
65albii 1685 . . 3  |-  ( A. x E. z A. y
( x A y  ->  y  =  z )  <->  A. x E. z A. y ( <. x ,  y >.  e.  A  ->  y  =  z ) )
76anbi2i 698 . 2  |-  ( ( Rel  A  /\  A. x E. z A. y
( x A y  ->  y  =  z ) )  <->  ( Rel  A  /\  A. x E. z A. y ( <.
x ,  y >.  e.  A  ->  y  =  z ) ) )
81, 7bitri 252 1  |-  ( Fun 
A  <->  ( Rel  A  /\  A. x E. z A. y ( <. x ,  y >.  e.  A  ->  y  =  z ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370   A.wal 1435   E.wex 1657    e. wcel 1872   <.cop 4004   class class class wbr 4423   Rel wrel 4858   Fun wfun 5595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2057  ax-ext 2401  ax-sep 4546  ax-nul 4555  ax-pr 4660
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2273  df-mo 2274  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2568  df-ne 2616  df-ral 2776  df-rab 2780  df-v 3082  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-nul 3762  df-if 3912  df-sn 3999  df-pr 4001  df-op 4005  df-br 4424  df-opab 4483  df-id 4768  df-cnv 4861  df-co 4862  df-fun 5603
This theorem is referenced by:  funimaexg  5678  fvn0ssdmfun  6029  uzrdgfni  12179  dffrege115  36545
  Copyright terms: Public domain W3C validator