MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dffun3 Structured version   Unicode version

Theorem dffun3 5579
Description: Alternate definition of function. (Contributed by NM, 29-Dec-1996.)
Assertion
Ref Expression
dffun3  |-  ( Fun 
A  <->  ( Rel  A  /\  A. x E. z A. y ( x A y  ->  y  =  z ) ) )
Distinct variable group:    x, y, z, A

Proof of Theorem dffun3
StepHypRef Expression
1 dffun2 5578 . 2  |-  ( Fun 
A  <->  ( Rel  A  /\  A. x A. y A. z ( ( x A y  /\  x A z )  -> 
y  =  z ) ) )
2 breq2 4398 . . . . . 6  |-  ( y  =  z  ->  (
x A y  <->  x A
z ) )
32mo4 2289 . . . . 5  |-  ( E* y  x A y  <->  A. y A. z ( ( x A y  /\  x A z )  ->  y  =  z ) )
4 mo2v 2245 . . . . 5  |-  ( E* y  x A y  <->  E. z A. y ( x A y  -> 
y  =  z ) )
53, 4bitr3i 251 . . . 4  |-  ( A. y A. z ( ( x A y  /\  x A z )  -> 
y  =  z )  <->  E. z A. y ( x A y  -> 
y  =  z ) )
65albii 1661 . . 3  |-  ( A. x A. y A. z
( ( x A y  /\  x A z )  ->  y  =  z )  <->  A. x E. z A. y ( x A y  -> 
y  =  z ) )
76anbi2i 692 . 2  |-  ( ( Rel  A  /\  A. x A. y A. z
( ( x A y  /\  x A z )  ->  y  =  z ) )  <-> 
( Rel  A  /\  A. x E. z A. y ( x A y  ->  y  =  z ) ) )
81, 7bitri 249 1  |-  ( Fun 
A  <->  ( Rel  A  /\  A. x E. z A. y ( x A y  ->  y  =  z ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367   A.wal 1403   E.wex 1633   E*wmo 2239   class class class wbr 4394   Rel wrel 4827   Fun wfun 5562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-sep 4516  ax-nul 4524  ax-pr 4629
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-ral 2758  df-rab 2762  df-v 3060  df-dif 3416  df-un 3418  df-in 3420  df-ss 3427  df-nul 3738  df-if 3885  df-sn 3972  df-pr 3974  df-op 3978  df-br 4395  df-opab 4453  df-id 4737  df-cnv 4830  df-co 4831  df-fun 5570
This theorem is referenced by:  dffun5  5581  dffun6f  5582  sbcfung  5591  dffv2  5921
  Copyright terms: Public domain W3C validator