MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dffun3 Structured version   Unicode version

Theorem dffun3 5592
Description: Alternate definition of function. (Contributed by NM, 29-Dec-1996.)
Assertion
Ref Expression
dffun3  |-  ( Fun 
A  <->  ( Rel  A  /\  A. x E. z A. y ( x A y  ->  y  =  z ) ) )
Distinct variable group:    x, y, z, A

Proof of Theorem dffun3
StepHypRef Expression
1 dffun2 5591 . 2  |-  ( Fun 
A  <->  ( Rel  A  /\  A. x A. y A. z ( ( x A y  /\  x A z )  -> 
y  =  z ) ) )
2 breq2 4446 . . . . . 6  |-  ( y  =  z  ->  (
x A y  <->  x A
z ) )
32mo4 2334 . . . . 5  |-  ( E* y  x A y  <->  A. y A. z ( ( x A y  /\  x A z )  ->  y  =  z ) )
4 mo2v 2277 . . . . 5  |-  ( E* y  x A y  <->  E. z A. y ( x A y  -> 
y  =  z ) )
53, 4bitr3i 251 . . . 4  |-  ( A. y A. z ( ( x A y  /\  x A z )  -> 
y  =  z )  <->  E. z A. y ( x A y  -> 
y  =  z ) )
65albii 1615 . . 3  |-  ( A. x A. y A. z
( ( x A y  /\  x A z )  ->  y  =  z )  <->  A. x E. z A. y ( x A y  -> 
y  =  z ) )
76anbi2i 694 . 2  |-  ( ( Rel  A  /\  A. x A. y A. z
( ( x A y  /\  x A z )  ->  y  =  z ) )  <-> 
( Rel  A  /\  A. x E. z A. y ( x A y  ->  y  =  z ) ) )
81, 7bitri 249 1  |-  ( Fun 
A  <->  ( Rel  A  /\  A. x E. z A. y ( x A y  ->  y  =  z ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369   A.wal 1372   E.wex 1591   E*wmo 2271   class class class wbr 4442   Rel wrel 4999   Fun wfun 5575
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1963  ax-ext 2440  ax-sep 4563  ax-nul 4571  ax-pr 4681
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2274  df-mo 2275  df-clab 2448  df-cleq 2454  df-clel 2457  df-nfc 2612  df-ne 2659  df-ral 2814  df-rab 2818  df-v 3110  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3781  df-if 3935  df-sn 4023  df-pr 4025  df-op 4029  df-br 4443  df-opab 4501  df-id 4790  df-cnv 5002  df-co 5003  df-fun 5583
This theorem is referenced by:  dffun5  5594  dffun6f  5595  sbcfung  5604  dffv2  5933
  Copyright terms: Public domain W3C validator