MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dffr2 Structured version   Unicode version

Theorem dffr2 4758
Description: Alternate definition of well-founded relation. Similar to Definition 6.21 of [TakeutiZaring] p. 30. (Contributed by NM, 17-Feb-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) (Proof shortened by Mario Carneiro, 23-Jun-2015.)
Assertion
Ref Expression
dffr2  |-  ( R  Fr  A  <->  A. x
( ( x  C_  A  /\  x  =/=  (/) )  ->  E. y  e.  x  { z  e.  x  |  z R y }  =  (/) ) )
Distinct variable groups:    x, y,
z, A    x, R, y, z

Proof of Theorem dffr2
StepHypRef Expression
1 df-fr 4752 . 2  |-  ( R  Fr  A  <->  A. x
( ( x  C_  A  /\  x  =/=  (/) )  ->  E. y  e.  x  A. z  e.  x  -.  z R y ) )
2 rabeq0 3734 . . . . 5  |-  ( { z  e.  x  |  z R y }  =  (/)  <->  A. z  e.  x  -.  z R y )
32rexbii 2884 . . . 4  |-  ( E. y  e.  x  {
z  e.  x  |  z R y }  =  (/)  <->  E. y  e.  x  A. z  e.  x  -.  z R y )
43imbi2i 310 . . 3  |-  ( ( ( x  C_  A  /\  x  =/=  (/) )  ->  E. y  e.  x  { z  e.  x  |  z R y }  =  (/) )  <->  ( (
x  C_  A  /\  x  =/=  (/) )  ->  E. y  e.  x  A. z  e.  x  -.  z R y ) )
54albii 1648 . 2  |-  ( A. x ( ( x 
C_  A  /\  x  =/=  (/) )  ->  E. y  e.  x  { z  e.  x  |  z R y }  =  (/) )  <->  A. x ( ( x  C_  A  /\  x  =/=  (/) )  ->  E. y  e.  x  A. z  e.  x  -.  z R y ) )
61, 5bitr4i 252 1  |-  ( R  Fr  A  <->  A. x
( ( x  C_  A  /\  x  =/=  (/) )  ->  E. y  e.  x  { z  e.  x  |  z R y }  =  (/) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 367   A.wal 1397    = wceq 1399    =/= wne 2577   A.wral 2732   E.wrex 2733   {crab 2736    C_ wss 3389   (/)c0 3711   class class class wbr 4367    Fr wfr 4749
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1626  ax-4 1639  ax-5 1712  ax-6 1755  ax-7 1798  ax-10 1845  ax-11 1850  ax-12 1862  ax-13 2006  ax-ext 2360
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-tru 1402  df-ex 1621  df-nf 1625  df-sb 1748  df-clab 2368  df-cleq 2374  df-clel 2377  df-nfc 2532  df-ne 2579  df-ral 2737  df-rex 2738  df-rab 2741  df-v 3036  df-dif 3392  df-nul 3712  df-fr 4752
This theorem is referenced by:  fr0  4772  dfepfr  4778  dffr3  5281
  Copyright terms: Public domain W3C validator