MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dffo5 Structured version   Unicode version

Theorem dffo5 6049
Description: Alternate definition of an onto mapping. (Contributed by NM, 20-Mar-2007.)
Assertion
Ref Expression
dffo5  |-  ( F : A -onto-> B  <->  ( F : A --> B  /\  A. y  e.  B  E. x  x F y ) )
Distinct variable groups:    x, y, A    x, B, y    x, F, y

Proof of Theorem dffo5
StepHypRef Expression
1 dffo4 6048 . 2  |-  ( F : A -onto-> B  <->  ( F : A --> B  /\  A. y  e.  B  E. x  e.  A  x F y ) )
2 rexex 2924 . . . . 5  |-  ( E. x  e.  A  x F y  ->  E. x  x F y )
32ralimi 2860 . . . 4  |-  ( A. y  e.  B  E. x  e.  A  x F y  ->  A. y  e.  B  E. x  x F y )
43anim2i 569 . . 3  |-  ( ( F : A --> B  /\  A. y  e.  B  E. x  e.  A  x F y )  -> 
( F : A --> B  /\  A. y  e.  B  E. x  x F y ) )
5 ffn 5737 . . . . . . . . 9  |-  ( F : A --> B  ->  F  Fn  A )
6 fnbr 5689 . . . . . . . . . 10  |-  ( ( F  Fn  A  /\  x F y )  ->  x  e.  A )
76ex 434 . . . . . . . . 9  |-  ( F  Fn  A  ->  (
x F y  ->  x  e.  A )
)
85, 7syl 16 . . . . . . . 8  |-  ( F : A --> B  -> 
( x F y  ->  x  e.  A
) )
98ancrd 554 . . . . . . 7  |-  ( F : A --> B  -> 
( x F y  ->  ( x  e.  A  /\  x F y ) ) )
109eximdv 1686 . . . . . 6  |-  ( F : A --> B  -> 
( E. x  x F y  ->  E. x
( x  e.  A  /\  x F y ) ) )
11 df-rex 2823 . . . . . 6  |-  ( E. x  e.  A  x F y  <->  E. x
( x  e.  A  /\  x F y ) )
1210, 11syl6ibr 227 . . . . 5  |-  ( F : A --> B  -> 
( E. x  x F y  ->  E. x  e.  A  x F
y ) )
1312ralimdv 2877 . . . 4  |-  ( F : A --> B  -> 
( A. y  e.  B  E. x  x F y  ->  A. y  e.  B  E. x  e.  A  x F
y ) )
1413imdistani 690 . . 3  |-  ( ( F : A --> B  /\  A. y  e.  B  E. x  x F y )  ->  ( F : A
--> B  /\  A. y  e.  B  E. x  e.  A  x F
y ) )
154, 14impbii 188 . 2  |-  ( ( F : A --> B  /\  A. y  e.  B  E. x  e.  A  x F y )  <->  ( F : A --> B  /\  A. y  e.  B  E. x  x F y ) )
161, 15bitri 249 1  |-  ( F : A -onto-> B  <->  ( F : A --> B  /\  A. y  e.  B  E. x  x F y ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369   E.wex 1596    e. wcel 1767   A.wral 2817   E.wrex 2818   class class class wbr 4453    Fn wfn 5589   -->wf 5590   -onto->wfo 5592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4574  ax-nul 4582  ax-pr 4692
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2822  df-rex 2823  df-rab 2826  df-v 3120  df-sbc 3337  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-nul 3791  df-if 3946  df-sn 4034  df-pr 4036  df-op 4040  df-uni 4252  df-br 4454  df-opab 4512  df-mpt 4513  df-id 4801  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-fo 5600  df-fv 5602
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator