MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dff4 Structured version   Unicode version

Theorem dff4 5969
Description: Alternate definition of a mapping. (Contributed by NM, 20-Mar-2007.)
Assertion
Ref Expression
dff4  |-  ( F : A --> B  <->  ( F  C_  ( A  X.  B
)  /\  A. x  e.  A  E! y  e.  B  x F
y ) )
Distinct variable groups:    x, y, A    x, B, y    x, F, y

Proof of Theorem dff4
StepHypRef Expression
1 dff3 5968 . 2  |-  ( F : A --> B  <->  ( F  C_  ( A  X.  B
)  /\  A. x  e.  A  E! y  x F y ) )
2 df-br 4404 . . . . . . . 8  |-  ( x F y  <->  <. x ,  y >.  e.  F
)
3 ssel 3461 . . . . . . . . 9  |-  ( F 
C_  ( A  X.  B )  ->  ( <. x ,  y >.  e.  F  ->  <. x ,  y >.  e.  ( A  X.  B ) ) )
4 opelxp2 4984 . . . . . . . . 9  |-  ( <.
x ,  y >.  e.  ( A  X.  B
)  ->  y  e.  B )
53, 4syl6 33 . . . . . . . 8  |-  ( F 
C_  ( A  X.  B )  ->  ( <. x ,  y >.  e.  F  ->  y  e.  B ) )
62, 5syl5bi 217 . . . . . . 7  |-  ( F 
C_  ( A  X.  B )  ->  (
x F y  -> 
y  e.  B ) )
76pm4.71rd 635 . . . . . 6  |-  ( F 
C_  ( A  X.  B )  ->  (
x F y  <->  ( y  e.  B  /\  x F y ) ) )
87eubidv 2285 . . . . 5  |-  ( F 
C_  ( A  X.  B )  ->  ( E! y  x F
y  <->  E! y ( y  e.  B  /\  x F y ) ) )
9 df-reu 2806 . . . . 5  |-  ( E! y  e.  B  x F y  <->  E! y
( y  e.  B  /\  x F y ) )
108, 9syl6bbr 263 . . . 4  |-  ( F 
C_  ( A  X.  B )  ->  ( E! y  x F
y  <->  E! y  e.  B  x F y ) )
1110ralbidv 2846 . . 3  |-  ( F 
C_  ( A  X.  B )  ->  ( A. x  e.  A  E! y  x F
y  <->  A. x  e.  A  E! y  e.  B  x F y ) )
1211pm5.32i 637 . 2  |-  ( ( F  C_  ( A  X.  B )  /\  A. x  e.  A  E! y  x F y )  <-> 
( F  C_  ( A  X.  B )  /\  A. x  e.  A  E! y  e.  B  x F y ) )
131, 12bitri 249 1  |-  ( F : A --> B  <->  ( F  C_  ( A  X.  B
)  /\  A. x  e.  A  E! y  e.  B  x F
y ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 369    e. wcel 1758   E!weu 2262   A.wral 2799   E!wreu 2801    C_ wss 3439   <.cop 3994   class class class wbr 4403    X. cxp 4949   -->wf 5525
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4524  ax-nul 4532  ax-pr 4642
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-ral 2804  df-rex 2805  df-reu 2806  df-rab 2808  df-v 3080  df-sbc 3295  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-nul 3749  df-if 3903  df-sn 3989  df-pr 3991  df-op 3995  df-uni 4203  df-br 4404  df-opab 4462  df-id 4747  df-xp 4957  df-rel 4958  df-cnv 4959  df-co 4960  df-dm 4961  df-rn 4962  df-iota 5492  df-fun 5531  df-fn 5532  df-f 5533  df-fv 5537
This theorem is referenced by:  exfo  5973
  Copyright terms: Public domain W3C validator