MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dff13f Structured version   Unicode version

Theorem dff13f 6168
Description: A one-to-one function in terms of function values. Compare Theorem 4.8(iv) of [Monk1] p. 43. (Contributed by NM, 31-Jul-2003.)
Hypotheses
Ref Expression
dff13f.1  |-  F/_ x F
dff13f.2  |-  F/_ y F
Assertion
Ref Expression
dff13f  |-  ( F : A -1-1-> B  <->  ( F : A --> B  /\  A. x  e.  A  A. y  e.  A  (
( F `  x
)  =  ( F `
 y )  ->  x  =  y )
) )
Distinct variable group:    x, y, A
Allowed substitution hints:    B( x, y)    F( x, y)

Proof of Theorem dff13f
Dummy variables  w  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dff13 6167 . 2  |-  ( F : A -1-1-> B  <->  ( F : A --> B  /\  A. w  e.  A  A. v  e.  A  (
( F `  w
)  =  ( F `
 v )  ->  w  =  v )
) )
2 dff13f.2 . . . . . . . . 9  |-  F/_ y F
3 nfcv 2619 . . . . . . . . 9  |-  F/_ y
w
42, 3nffv 5879 . . . . . . . 8  |-  F/_ y
( F `  w
)
5 nfcv 2619 . . . . . . . . 9  |-  F/_ y
v
62, 5nffv 5879 . . . . . . . 8  |-  F/_ y
( F `  v
)
74, 6nfeq 2630 . . . . . . 7  |-  F/ y ( F `  w
)  =  ( F `
 v )
8 nfv 1708 . . . . . . 7  |-  F/ y  w  =  v
97, 8nfim 1921 . . . . . 6  |-  F/ y ( ( F `  w )  =  ( F `  v )  ->  w  =  v )
10 nfv 1708 . . . . . 6  |-  F/ v ( ( F `  w )  =  ( F `  y )  ->  w  =  y )
11 fveq2 5872 . . . . . . . 8  |-  ( v  =  y  ->  ( F `  v )  =  ( F `  y ) )
1211eqeq2d 2471 . . . . . . 7  |-  ( v  =  y  ->  (
( F `  w
)  =  ( F `
 v )  <->  ( F `  w )  =  ( F `  y ) ) )
13 equequ2 1800 . . . . . . 7  |-  ( v  =  y  ->  (
w  =  v  <->  w  =  y ) )
1412, 13imbi12d 320 . . . . . 6  |-  ( v  =  y  ->  (
( ( F `  w )  =  ( F `  v )  ->  w  =  v )  <->  ( ( F `
 w )  =  ( F `  y
)  ->  w  =  y ) ) )
159, 10, 14cbvral 3080 . . . . 5  |-  ( A. v  e.  A  (
( F `  w
)  =  ( F `
 v )  ->  w  =  v )  <->  A. y  e.  A  ( ( F `  w
)  =  ( F `
 y )  ->  w  =  y )
)
1615ralbii 2888 . . . 4  |-  ( A. w  e.  A  A. v  e.  A  (
( F `  w
)  =  ( F `
 v )  ->  w  =  v )  <->  A. w  e.  A  A. y  e.  A  (
( F `  w
)  =  ( F `
 y )  ->  w  =  y )
)
17 nfcv 2619 . . . . . 6  |-  F/_ x A
18 dff13f.1 . . . . . . . . 9  |-  F/_ x F
19 nfcv 2619 . . . . . . . . 9  |-  F/_ x w
2018, 19nffv 5879 . . . . . . . 8  |-  F/_ x
( F `  w
)
21 nfcv 2619 . . . . . . . . 9  |-  F/_ x
y
2218, 21nffv 5879 . . . . . . . 8  |-  F/_ x
( F `  y
)
2320, 22nfeq 2630 . . . . . . 7  |-  F/ x
( F `  w
)  =  ( F `
 y )
24 nfv 1708 . . . . . . 7  |-  F/ x  w  =  y
2523, 24nfim 1921 . . . . . 6  |-  F/ x
( ( F `  w )  =  ( F `  y )  ->  w  =  y )
2617, 25nfral 2843 . . . . 5  |-  F/ x A. y  e.  A  ( ( F `  w )  =  ( F `  y )  ->  w  =  y )
27 nfv 1708 . . . . 5  |-  F/ w A. y  e.  A  ( ( F `  x )  =  ( F `  y )  ->  x  =  y )
28 fveq2 5872 . . . . . . . 8  |-  ( w  =  x  ->  ( F `  w )  =  ( F `  x ) )
2928eqeq1d 2459 . . . . . . 7  |-  ( w  =  x  ->  (
( F `  w
)  =  ( F `
 y )  <->  ( F `  x )  =  ( F `  y ) ) )
30 equequ1 1799 . . . . . . 7  |-  ( w  =  x  ->  (
w  =  y  <->  x  =  y ) )
3129, 30imbi12d 320 . . . . . 6  |-  ( w  =  x  ->  (
( ( F `  w )  =  ( F `  y )  ->  w  =  y )  <->  ( ( F `
 x )  =  ( F `  y
)  ->  x  =  y ) ) )
3231ralbidv 2896 . . . . 5  |-  ( w  =  x  ->  ( A. y  e.  A  ( ( F `  w )  =  ( F `  y )  ->  w  =  y )  <->  A. y  e.  A  ( ( F `  x )  =  ( F `  y )  ->  x  =  y ) ) )
3326, 27, 32cbvral 3080 . . . 4  |-  ( A. w  e.  A  A. y  e.  A  (
( F `  w
)  =  ( F `
 y )  ->  w  =  y )  <->  A. x  e.  A  A. y  e.  A  (
( F `  x
)  =  ( F `
 y )  ->  x  =  y )
)
3416, 33bitri 249 . . 3  |-  ( A. w  e.  A  A. v  e.  A  (
( F `  w
)  =  ( F `
 v )  ->  w  =  v )  <->  A. x  e.  A  A. y  e.  A  (
( F `  x
)  =  ( F `
 y )  ->  x  =  y )
)
3534anbi2i 694 . 2  |-  ( ( F : A --> B  /\  A. w  e.  A  A. v  e.  A  (
( F `  w
)  =  ( F `
 v )  ->  w  =  v )
)  <->  ( F : A
--> B  /\  A. x  e.  A  A. y  e.  A  ( ( F `  x )  =  ( F `  y )  ->  x  =  y ) ) )
361, 35bitri 249 1  |-  ( F : A -1-1-> B  <->  ( F : A --> B  /\  A. x  e.  A  A. y  e.  A  (
( F `  x
)  =  ( F `
 y )  ->  x  =  y )
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1395   F/_wnfc 2605   A.wral 2807   -->wf 5590   -1-1->wf1 5591   ` cfv 5594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pr 4695
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-sbc 3328  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3794  df-if 3945  df-sn 4033  df-pr 4035  df-op 4039  df-uni 4252  df-br 4457  df-opab 4516  df-id 4804  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fv 5602
This theorem is referenced by:  f1mpt  6170  dom2lem  7574
  Copyright terms: Public domain W3C validator