MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dff13 Structured version   Unicode version

Theorem dff13 6141
Description: A one-to-one function in terms of function values. Compare Theorem 4.8(iv) of [Monk1] p. 43. (Contributed by NM, 29-Oct-1996.)
Assertion
Ref Expression
dff13  |-  ( F : A -1-1-> B  <->  ( F : A --> B  /\  A. x  e.  A  A. y  e.  A  (
( F `  x
)  =  ( F `
 y )  ->  x  =  y )
) )
Distinct variable groups:    x, y, A    x, F, y
Allowed substitution hints:    B( x, y)

Proof of Theorem dff13
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 dff12 5762 . 2  |-  ( F : A -1-1-> B  <->  ( F : A --> B  /\  A. z E* x  x F z ) )
2 ffn 5713 . . . 4  |-  ( F : A --> B  ->  F  Fn  A )
3 vex 3109 . . . . . . . . . . . . . . 15  |-  x  e. 
_V
4 vex 3109 . . . . . . . . . . . . . . 15  |-  z  e. 
_V
53, 4breldm 5196 . . . . . . . . . . . . . 14  |-  ( x F z  ->  x  e.  dom  F )
6 fndm 5662 . . . . . . . . . . . . . . 15  |-  ( F  Fn  A  ->  dom  F  =  A )
76eleq2d 2524 . . . . . . . . . . . . . 14  |-  ( F  Fn  A  ->  (
x  e.  dom  F  <->  x  e.  A ) )
85, 7syl5ib 219 . . . . . . . . . . . . 13  |-  ( F  Fn  A  ->  (
x F z  ->  x  e.  A )
)
9 vex 3109 . . . . . . . . . . . . . . 15  |-  y  e. 
_V
109, 4breldm 5196 . . . . . . . . . . . . . 14  |-  ( y F z  ->  y  e.  dom  F )
116eleq2d 2524 . . . . . . . . . . . . . 14  |-  ( F  Fn  A  ->  (
y  e.  dom  F  <->  y  e.  A ) )
1210, 11syl5ib 219 . . . . . . . . . . . . 13  |-  ( F  Fn  A  ->  (
y F z  -> 
y  e.  A ) )
138, 12anim12d 561 . . . . . . . . . . . 12  |-  ( F  Fn  A  ->  (
( x F z  /\  y F z )  ->  ( x  e.  A  /\  y  e.  A ) ) )
1413pm4.71rd 633 . . . . . . . . . . 11  |-  ( F  Fn  A  ->  (
( x F z  /\  y F z )  <->  ( ( x  e.  A  /\  y  e.  A )  /\  (
x F z  /\  y F z ) ) ) )
15 eqcom 2463 . . . . . . . . . . . . . . 15  |-  ( z  =  ( F `  x )  <->  ( F `  x )  =  z )
16 fnbrfvb 5888 . . . . . . . . . . . . . . 15  |-  ( ( F  Fn  A  /\  x  e.  A )  ->  ( ( F `  x )  =  z  <-> 
x F z ) )
1715, 16syl5bb 257 . . . . . . . . . . . . . 14  |-  ( ( F  Fn  A  /\  x  e.  A )  ->  ( z  =  ( F `  x )  <-> 
x F z ) )
18 eqcom 2463 . . . . . . . . . . . . . . 15  |-  ( z  =  ( F `  y )  <->  ( F `  y )  =  z )
19 fnbrfvb 5888 . . . . . . . . . . . . . . 15  |-  ( ( F  Fn  A  /\  y  e.  A )  ->  ( ( F `  y )  =  z  <-> 
y F z ) )
2018, 19syl5bb 257 . . . . . . . . . . . . . 14  |-  ( ( F  Fn  A  /\  y  e.  A )  ->  ( z  =  ( F `  y )  <-> 
y F z ) )
2117, 20bi2anan9 871 . . . . . . . . . . . . 13  |-  ( ( ( F  Fn  A  /\  x  e.  A
)  /\  ( F  Fn  A  /\  y  e.  A ) )  -> 
( ( z  =  ( F `  x
)  /\  z  =  ( F `  y ) )  <->  ( x F z  /\  y F z ) ) )
2221anandis 828 . . . . . . . . . . . 12  |-  ( ( F  Fn  A  /\  ( x  e.  A  /\  y  e.  A
) )  ->  (
( z  =  ( F `  x )  /\  z  =  ( F `  y ) )  <->  ( x F z  /\  y F z ) ) )
2322pm5.32da 639 . . . . . . . . . . 11  |-  ( F  Fn  A  ->  (
( ( x  e.  A  /\  y  e.  A )  /\  (
z  =  ( F `
 x )  /\  z  =  ( F `  y ) ) )  <-> 
( ( x  e.  A  /\  y  e.  A )  /\  (
x F z  /\  y F z ) ) ) )
2414, 23bitr4d 256 . . . . . . . . . 10  |-  ( F  Fn  A  ->  (
( x F z  /\  y F z )  <->  ( ( x  e.  A  /\  y  e.  A )  /\  (
z  =  ( F `
 x )  /\  z  =  ( F `  y ) ) ) ) )
2524imbi1d 315 . . . . . . . . 9  |-  ( F  Fn  A  ->  (
( ( x F z  /\  y F z )  ->  x  =  y )  <->  ( (
( x  e.  A  /\  y  e.  A
)  /\  ( z  =  ( F `  x )  /\  z  =  ( F `  y ) ) )  ->  x  =  y ) ) )
26 impexp 444 . . . . . . . . 9  |-  ( ( ( ( x  e.  A  /\  y  e.  A )  /\  (
z  =  ( F `
 x )  /\  z  =  ( F `  y ) ) )  ->  x  =  y )  <->  ( ( x  e.  A  /\  y  e.  A )  ->  (
( z  =  ( F `  x )  /\  z  =  ( F `  y ) )  ->  x  =  y ) ) )
2725, 26syl6bb 261 . . . . . . . 8  |-  ( F  Fn  A  ->  (
( ( x F z  /\  y F z )  ->  x  =  y )  <->  ( (
x  e.  A  /\  y  e.  A )  ->  ( ( z  =  ( F `  x
)  /\  z  =  ( F `  y ) )  ->  x  =  y ) ) ) )
2827albidv 1718 . . . . . . 7  |-  ( F  Fn  A  ->  ( A. z ( ( x F z  /\  y F z )  ->  x  =  y )  <->  A. z ( ( x  e.  A  /\  y  e.  A )  ->  (
( z  =  ( F `  x )  /\  z  =  ( F `  y ) )  ->  x  =  y ) ) ) )
29 19.21v 1734 . . . . . . . 8  |-  ( A. z ( ( x  e.  A  /\  y  e.  A )  ->  (
( z  =  ( F `  x )  /\  z  =  ( F `  y ) )  ->  x  =  y ) )  <->  ( (
x  e.  A  /\  y  e.  A )  ->  A. z ( ( z  =  ( F `
 x )  /\  z  =  ( F `  y ) )  ->  x  =  y )
) )
30 19.23v 1765 . . . . . . . . . 10  |-  ( A. z ( ( z  =  ( F `  x )  /\  z  =  ( F `  y ) )  ->  x  =  y )  <->  ( E. z ( z  =  ( F `  x )  /\  z  =  ( F `  y ) )  ->  x  =  y )
)
31 fvex 5858 . . . . . . . . . . . 12  |-  ( F `
 x )  e. 
_V
3231eqvinc 3223 . . . . . . . . . . 11  |-  ( ( F `  x )  =  ( F `  y )  <->  E. z
( z  =  ( F `  x )  /\  z  =  ( F `  y ) ) )
3332imbi1i 323 . . . . . . . . . 10  |-  ( ( ( F `  x
)  =  ( F `
 y )  ->  x  =  y )  <->  ( E. z ( z  =  ( F `  x )  /\  z  =  ( F `  y ) )  ->  x  =  y )
)
3430, 33bitr4i 252 . . . . . . . . 9  |-  ( A. z ( ( z  =  ( F `  x )  /\  z  =  ( F `  y ) )  ->  x  =  y )  <->  ( ( F `  x
)  =  ( F `
 y )  ->  x  =  y )
)
3534imbi2i 310 . . . . . . . 8  |-  ( ( ( x  e.  A  /\  y  e.  A
)  ->  A. z
( ( z  =  ( F `  x
)  /\  z  =  ( F `  y ) )  ->  x  =  y ) )  <->  ( (
x  e.  A  /\  y  e.  A )  ->  ( ( F `  x )  =  ( F `  y )  ->  x  =  y ) ) )
3629, 35bitri 249 . . . . . . 7  |-  ( A. z ( ( x  e.  A  /\  y  e.  A )  ->  (
( z  =  ( F `  x )  /\  z  =  ( F `  y ) )  ->  x  =  y ) )  <->  ( (
x  e.  A  /\  y  e.  A )  ->  ( ( F `  x )  =  ( F `  y )  ->  x  =  y ) ) )
3728, 36syl6bb 261 . . . . . 6  |-  ( F  Fn  A  ->  ( A. z ( ( x F z  /\  y F z )  ->  x  =  y )  <->  ( ( x  e.  A  /\  y  e.  A
)  ->  ( ( F `  x )  =  ( F `  y )  ->  x  =  y ) ) ) )
38372albidv 1720 . . . . 5  |-  ( F  Fn  A  ->  ( A. x A. y A. z ( ( x F z  /\  y F z )  ->  x  =  y )  <->  A. x A. y ( ( x  e.  A  /\  y  e.  A
)  ->  ( ( F `  x )  =  ( F `  y )  ->  x  =  y ) ) ) )
39 breq1 4442 . . . . . . . 8  |-  ( x  =  y  ->  (
x F z  <->  y F
z ) )
4039mo4 2335 . . . . . . 7  |-  ( E* x  x F z  <->  A. x A. y ( ( x F z  /\  y F z )  ->  x  =  y ) )
4140albii 1645 . . . . . 6  |-  ( A. z E* x  x F z  <->  A. z A. x A. y ( ( x F z  /\  y F z )  ->  x  =  y )
)
42 alrot3 1851 . . . . . 6  |-  ( A. z A. x A. y
( ( x F z  /\  y F z )  ->  x  =  y )  <->  A. x A. y A. z ( ( x F z  /\  y F z )  ->  x  =  y ) )
4341, 42bitri 249 . . . . 5  |-  ( A. z E* x  x F z  <->  A. x A. y A. z ( ( x F z  /\  y F z )  ->  x  =  y )
)
44 r2al 2832 . . . . 5  |-  ( A. x  e.  A  A. y  e.  A  (
( F `  x
)  =  ( F `
 y )  ->  x  =  y )  <->  A. x A. y ( ( x  e.  A  /\  y  e.  A
)  ->  ( ( F `  x )  =  ( F `  y )  ->  x  =  y ) ) )
4538, 43, 443bitr4g 288 . . . 4  |-  ( F  Fn  A  ->  ( A. z E* x  x F z  <->  A. x  e.  A  A. y  e.  A  ( ( F `  x )  =  ( F `  y )  ->  x  =  y ) ) )
462, 45syl 16 . . 3  |-  ( F : A --> B  -> 
( A. z E* x  x F z  <->  A. x  e.  A  A. y  e.  A  ( ( F `  x )  =  ( F `  y )  ->  x  =  y ) ) )
4746pm5.32i 635 . 2  |-  ( ( F : A --> B  /\  A. z E* x  x F z )  <->  ( F : A --> B  /\  A. x  e.  A  A. y  e.  A  (
( F `  x
)  =  ( F `
 y )  ->  x  =  y )
) )
481, 47bitri 249 1  |-  ( F : A -1-1-> B  <->  ( F : A --> B  /\  A. x  e.  A  A. y  e.  A  (
( F `  x
)  =  ( F `
 y )  ->  x  =  y )
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367   A.wal 1396    = wceq 1398   E.wex 1617    e. wcel 1823   E*wmo 2285   A.wral 2804   class class class wbr 4439   dom cdm 4988    Fn wfn 5565   -->wf 5566   -1-1->wf1 5567   ` cfv 5570
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pr 4676
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-ral 2809  df-rex 2810  df-rab 2813  df-v 3108  df-sbc 3325  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3784  df-if 3930  df-sn 4017  df-pr 4019  df-op 4023  df-uni 4236  df-br 4440  df-opab 4498  df-id 4784  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fv 5578
This theorem is referenced by:  dff13f  6142  f1veqaeq  6143  dff14a  6152  dff1o6  6156  fcof1  6165  soisoi  6199  f1o2ndf1  6881  fnwelem  6888  smo11  7027  tz7.48lem  7098  omsmo  7295  unxpdomlem3  7719  unfilem2  7777  fofinf1o  7793  inf3lem6  8041  r111  8184  fseqenlem1  8396  fodomacn  8428  alephf1  8457  alephiso  8470  ackbij1lem17  8607  infpssrlem5  8678  fin23lem28  8711  fin1a2lem2  8772  fin1a2lem4  8774  axcc2lem  8807  domtriomlem  8813  cnref1o  11216  injresinj  11907  om2uzf1oi  12046  wwlktovf1  12886  reeff1  13937  bitsf1  14180  crt  14392  eulerthlem2  14396  1arith  14529  vdwlem12  14594  xpsff1o  15057  setcmon  15565  fthestrcsetc  15618  embedsetcestrclem  15625  fthsetcestrc  15633  yoniso  15753  ghmf1  16494  orbsta  16550  symgextf1  16645  symgfixf1  16661  odf1  16783  kerf1hrm  17587  mvrf1  18276  ply1sclf1  18525  znf1o  18763  cygznlem3  18781  uvcf1  18994  lindff1  19022  scmatf1  19200  mdetunilem8  19288  mat2pmatf1  19397  pm2mpf1  19467  ist0-4  20396  ovolicc2lem4  22097  recosf1o  23088  efif1olem4  23098  basellem4  23555  dvdsmulf1o  23668  lgsqrlem2  23815  lgseisenlem2  23823  axlowdimlem15  24461  wlkntrllem3  24765  wlkdvspthlem  24811  fargshiftf1  24839  constr3trllem2  24853  wlknwwlkninj  24913  wlkiswwlkinj  24920  wwlkextinj  24932  clwwlkf1  24998  clwlkf1clwwlk  25052  frgrancvvdeqlemB  25240  numclwlk1lem2f1  25296  pjmf1  26832  unopf1o  27033  erdszelem9  28907  mrsubff1  29138  msubff1  29180  mvhf1  29183  ghomf1olem  29298  f1opr  30455  grpokerinj  30587  dnnumch3  31232  sumnnodd  31875  dvnprodlem1  31982  fourierdlem34  32162  fourierdlem51  32179  cdleme50f1  36666  dihf11  37391
  Copyright terms: Public domain W3C validator