MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfer2 Structured version   Unicode version

Theorem dfer2 7094
Description: Alternate definition of equivalence predicate. (Contributed by NM, 3-Jan-1997.) (Revised by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
dfer2  |-  ( R  Er  A  <->  ( Rel  R  /\  dom  R  =  A  /\  A. x A. y A. z ( ( x R y  ->  y R x )  /\  ( ( x R y  /\  y R z )  ->  x R z ) ) ) )
Distinct variable group:    x, y, z, R
Allowed substitution hints:    A( x, y, z)

Proof of Theorem dfer2
StepHypRef Expression
1 df-er 7093 . 2  |-  ( R  Er  A  <->  ( Rel  R  /\  dom  R  =  A  /\  ( `' R  u.  ( R  o.  R ) ) 
C_  R ) )
2 cnvsym 5207 . . . . 5  |-  ( `' R  C_  R  <->  A. x A. y ( x R y  ->  y R x ) )
3 cotr 5205 . . . . 5  |-  ( ( R  o.  R ) 
C_  R  <->  A. x A. y A. z ( ( x R y  /\  y R z )  ->  x R
z ) )
42, 3anbi12i 697 . . . 4  |-  ( ( `' R  C_  R  /\  ( R  o.  R
)  C_  R )  <->  ( A. x A. y
( x R y  ->  y R x )  /\  A. x A. y A. z ( ( x R y  /\  y R z )  ->  x R
z ) ) )
5 unss 3525 . . . 4  |-  ( ( `' R  C_  R  /\  ( R  o.  R
)  C_  R )  <->  ( `' R  u.  ( R  o.  R )
)  C_  R )
6 19.28v 1914 . . . . . . . 8  |-  ( A. z ( ( x R y  ->  y R x )  /\  ( ( x R y  /\  y R z )  ->  x R z ) )  <-> 
( ( x R y  ->  y R x )  /\  A. z ( ( x R y  /\  y R z )  ->  x R z ) ) )
76albii 1610 . . . . . . 7  |-  ( A. y A. z ( ( x R y  -> 
y R x )  /\  ( ( x R y  /\  y R z )  ->  x R z ) )  <->  A. y ( ( x R y  ->  y R x )  /\  A. z ( ( x R y  /\  y R z )  ->  x R z ) ) )
8 19.26 1647 . . . . . . 7  |-  ( A. y ( ( x R y  ->  y R x )  /\  A. z ( ( x R y  /\  y R z )  ->  x R z ) )  <-> 
( A. y ( x R y  -> 
y R x )  /\  A. y A. z ( ( x R y  /\  y R z )  ->  x R z ) ) )
97, 8bitri 249 . . . . . 6  |-  ( A. y A. z ( ( x R y  -> 
y R x )  /\  ( ( x R y  /\  y R z )  ->  x R z ) )  <-> 
( A. y ( x R y  -> 
y R x )  /\  A. y A. z ( ( x R y  /\  y R z )  ->  x R z ) ) )
109albii 1610 . . . . 5  |-  ( A. x A. y A. z
( ( x R y  ->  y R x )  /\  (
( x R y  /\  y R z )  ->  x R
z ) )  <->  A. x
( A. y ( x R y  -> 
y R x )  /\  A. y A. z ( ( x R y  /\  y R z )  ->  x R z ) ) )
11 19.26 1647 . . . . 5  |-  ( A. x ( A. y
( x R y  ->  y R x )  /\  A. y A. z ( ( x R y  /\  y R z )  ->  x R z ) )  <-> 
( A. x A. y ( x R y  ->  y R x )  /\  A. x A. y A. z
( ( x R y  /\  y R z )  ->  x R z ) ) )
1210, 11bitr2i 250 . . . 4  |-  ( ( A. x A. y
( x R y  ->  y R x )  /\  A. x A. y A. z ( ( x R y  /\  y R z )  ->  x R
z ) )  <->  A. x A. y A. z ( ( x R y  ->  y R x )  /\  ( ( x R y  /\  y R z )  ->  x R z ) ) )
134, 5, 123bitr3i 275 . . 3  |-  ( ( `' R  u.  ( R  o.  R )
)  C_  R  <->  A. x A. y A. z ( ( x R y  ->  y R x )  /\  ( ( x R y  /\  y R z )  ->  x R z ) ) )
14133anbi3i 1180 . 2  |-  ( ( Rel  R  /\  dom  R  =  A  /\  ( `' R  u.  ( R  o.  R )
)  C_  R )  <->  ( Rel  R  /\  dom  R  =  A  /\  A. x A. y A. z
( ( x R y  ->  y R x )  /\  (
( x R y  /\  y R z )  ->  x R
z ) ) ) )
151, 14bitri 249 1  |-  ( R  Er  A  <->  ( Rel  R  /\  dom  R  =  A  /\  A. x A. y A. z ( ( x R y  ->  y R x )  /\  ( ( x R y  /\  y R z )  ->  x R z ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965   A.wal 1367    = wceq 1369    u. cun 3321    C_ wss 3323   class class class wbr 4287   `'ccnv 4834   dom cdm 4835    o. ccom 4839   Rel wrel 4840    Er wer 7090
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-sep 4408  ax-nul 4416  ax-pr 4526
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2715  df-rex 2716  df-rab 2719  df-v 2969  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-nul 3633  df-if 3787  df-sn 3873  df-pr 3875  df-op 3879  df-br 4288  df-opab 4346  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-er 7093
This theorem is referenced by:  iserd  7119  trer  28482  riscer  28765  prter1  28995
  Copyright terms: Public domain W3C validator