Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfdfat2 Structured version   Unicode version

Theorem dfdfat2 37584
Description: Alternate definition of the predicate "defined at" not using the  Fun predicate. (Contributed by Alexander van der Vekens, 22-Jul-2017.)
Assertion
Ref Expression
dfdfat2  |-  ( F defAt 
A  <->  ( A  e. 
dom  F  /\  E! y  A F y ) )
Distinct variable groups:    y, A    y, F

Proof of Theorem dfdfat2
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 df-dfat 37569 . 2  |-  ( F defAt 
A  <->  ( A  e. 
dom  F  /\  Fun  ( F  |`  { A }
) ) )
2 relres 5121 . . . 4  |-  Rel  ( F  |`  { A }
)
3 dffun8 5596 . . . 4  |-  ( Fun  ( F  |`  { A } )  <->  ( Rel  ( F  |`  { A } )  /\  A. x  e.  dom  ( F  |`  { A } ) E! y  x ( F  |`  { A } ) y ) )
42, 3mpbiran 919 . . 3  |-  ( Fun  ( F  |`  { A } )  <->  A. x  e.  dom  ( F  |`  { A } ) E! y  x ( F  |`  { A } ) y )
54anbi2i 692 . 2  |-  ( ( A  e.  dom  F  /\  Fun  ( F  |`  { A } ) )  <-> 
( A  e.  dom  F  /\  A. x  e. 
dom  ( F  |`  { A } ) E! y  x ( F  |`  { A } ) y ) )
6 vex 3062 . . . . . . . 8  |-  y  e. 
_V
76brres 5100 . . . . . . 7  |-  ( x ( F  |`  { A } ) y  <->  ( x F y  /\  x  e.  { A } ) )
87a1i 11 . . . . . 6  |-  ( A  e.  dom  F  -> 
( x ( F  |`  { A } ) y  <->  ( x F y  /\  x  e. 
{ A } ) ) )
98eubidv 2260 . . . . 5  |-  ( A  e.  dom  F  -> 
( E! y  x ( F  |`  { A } ) y  <->  E! y
( x F y  /\  x  e.  { A } ) ) )
109ralbidv 2843 . . . 4  |-  ( A  e.  dom  F  -> 
( A. x  e. 
dom  ( F  |`  { A } ) E! y  x ( F  |`  { A } ) y  <->  A. x  e.  dom  ( F  |`  { A } ) E! y ( x F y  /\  x  e.  { A } ) ) )
11 eldmressnsn 5133 . . . . 5  |-  ( A  e.  dom  F  ->  A  e.  dom  ( F  |`  { A } ) )
12 eldmressn 37576 . . . . 5  |-  ( x  e.  dom  ( F  |`  { A } )  ->  x  =  A )
13 breq1 4398 . . . . . . . 8  |-  ( x  =  A  ->  (
x F y  <->  A F
y ) )
1413anbi1d 703 . . . . . . 7  |-  ( x  =  A  ->  (
( x F y  /\  x  e.  { A } )  <->  ( A F y  /\  x  e.  { A } ) ) )
15 elsn 3986 . . . . . . . . 9  |-  ( x  e.  { A }  <->  x  =  A )
1615biimpri 206 . . . . . . . 8  |-  ( x  =  A  ->  x  e.  { A } )
1716biantrud 505 . . . . . . 7  |-  ( x  =  A  ->  ( A F y  <->  ( A F y  /\  x  e.  { A } ) ) )
1814, 17bitr4d 256 . . . . . 6  |-  ( x  =  A  ->  (
( x F y  /\  x  e.  { A } )  <->  A F
y ) )
1918eubidv 2260 . . . . 5  |-  ( x  =  A  ->  ( E! y ( x F y  /\  x  e. 
{ A } )  <-> 
E! y  A F y ) )
2011, 12, 19ralbinrald 37572 . . . 4  |-  ( A  e.  dom  F  -> 
( A. x  e. 
dom  ( F  |`  { A } ) E! y ( x F y  /\  x  e. 
{ A } )  <-> 
E! y  A F y ) )
2110, 20bitrd 253 . . 3  |-  ( A  e.  dom  F  -> 
( A. x  e. 
dom  ( F  |`  { A } ) E! y  x ( F  |`  { A } ) y  <->  E! y  A F y ) )
2221pm5.32i 635 . 2  |-  ( ( A  e.  dom  F  /\  A. x  e.  dom  ( F  |`  { A } ) E! y  x ( F  |`  { A } ) y )  <->  ( A  e. 
dom  F  /\  E! y  A F y ) )
231, 5, 223bitri 271 1  |-  ( F defAt 
A  <->  ( A  e. 
dom  F  /\  E! y  A F y ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 367    = wceq 1405    e. wcel 1842   E!weu 2238   A.wral 2754   {csn 3972   class class class wbr 4395   dom cdm 4823    |` cres 4825   Rel wrel 4828   Fun wfun 5563   defAt wdfat 37566
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-sep 4517  ax-nul 4525  ax-pr 4630
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-ral 2759  df-rex 2760  df-rab 2763  df-v 3061  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-nul 3739  df-if 3886  df-sn 3973  df-pr 3975  df-op 3979  df-br 4396  df-opab 4454  df-id 4738  df-xp 4829  df-rel 4830  df-cnv 4831  df-co 4832  df-dm 4833  df-res 4835  df-fun 5571  df-dfat 37569
This theorem is referenced by:  afveu  37606  rlimdmafv  37630
  Copyright terms: Public domain W3C validator