MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfcon2 Structured version   Unicode version

Theorem dfcon2 19702
Description: An alternate definition of connectedness. (Contributed by Jeff Hankins, 9-Jul-2009.) (Proof shortened by Mario Carneiro, 10-Mar-2015.)
Assertion
Ref Expression
dfcon2  |-  ( J  e.  (TopOn `  X
)  ->  ( J  e.  Con  <->  A. x  e.  J  A. y  e.  J  ( ( x  =/=  (/)  /\  y  =/=  (/)  /\  (
x  i^i  y )  =  (/) )  ->  (
x  u.  y )  =/=  X ) ) )
Distinct variable groups:    x, y, J    x, X, y

Proof of Theorem dfcon2
StepHypRef Expression
1 eqid 2467 . . . . . 6  |-  U. J  =  U. J
2 simpll 753 . . . . . 6  |-  ( ( ( J  e.  Con  /\  ( x  e.  J  /\  y  e.  J
) )  /\  (
x  =/=  (/)  /\  y  =/=  (/)  /\  ( x  i^i  y )  =  (/) ) )  ->  J  e.  Con )
3 simplrl 759 . . . . . 6  |-  ( ( ( J  e.  Con  /\  ( x  e.  J  /\  y  e.  J
) )  /\  (
x  =/=  (/)  /\  y  =/=  (/)  /\  ( x  i^i  y )  =  (/) ) )  ->  x  e.  J )
4 simpr1 1002 . . . . . 6  |-  ( ( ( J  e.  Con  /\  ( x  e.  J  /\  y  e.  J
) )  /\  (
x  =/=  (/)  /\  y  =/=  (/)  /\  ( x  i^i  y )  =  (/) ) )  ->  x  =/=  (/) )
5 simplrr 760 . . . . . 6  |-  ( ( ( J  e.  Con  /\  ( x  e.  J  /\  y  e.  J
) )  /\  (
x  =/=  (/)  /\  y  =/=  (/)  /\  ( x  i^i  y )  =  (/) ) )  ->  y  e.  J )
6 simpr2 1003 . . . . . 6  |-  ( ( ( J  e.  Con  /\  ( x  e.  J  /\  y  e.  J
) )  /\  (
x  =/=  (/)  /\  y  =/=  (/)  /\  ( x  i^i  y )  =  (/) ) )  ->  y  =/=  (/) )
7 simpr3 1004 . . . . . 6  |-  ( ( ( J  e.  Con  /\  ( x  e.  J  /\  y  e.  J
) )  /\  (
x  =/=  (/)  /\  y  =/=  (/)  /\  ( x  i^i  y )  =  (/) ) )  ->  (
x  i^i  y )  =  (/) )
81, 2, 3, 4, 5, 6, 7conndisj 19699 . . . . 5  |-  ( ( ( J  e.  Con  /\  ( x  e.  J  /\  y  e.  J
) )  /\  (
x  =/=  (/)  /\  y  =/=  (/)  /\  ( x  i^i  y )  =  (/) ) )  ->  (
x  u.  y )  =/=  U. J )
98ex 434 . . . 4  |-  ( ( J  e.  Con  /\  ( x  e.  J  /\  y  e.  J
) )  ->  (
( x  =/=  (/)  /\  y  =/=  (/)  /\  ( x  i^i  y )  =  (/) )  ->  ( x  u.  y )  =/=  U. J ) )
109ralrimivva 2885 . . 3  |-  ( J  e.  Con  ->  A. x  e.  J  A. y  e.  J  ( (
x  =/=  (/)  /\  y  =/=  (/)  /\  ( x  i^i  y )  =  (/) )  ->  ( x  u.  y )  =/=  U. J ) )
11 topontop 19210 . . . 4  |-  ( J  e.  (TopOn `  X
)  ->  J  e.  Top )
121cldopn 19314 . . . . . . . . . . . . . 14  |-  ( x  e.  ( Clsd `  J
)  ->  ( U. J  \  x )  e.  J )
1312adantl 466 . . . . . . . . . . . . 13  |-  ( ( J  e.  Top  /\  x  e.  ( Clsd `  J ) )  -> 
( U. J  \  x )  e.  J
)
14 df-3an 975 . . . . . . . . . . . . . . . 16  |-  ( ( x  =/=  (/)  /\  y  =/=  (/)  /\  ( x  i^i  y )  =  (/) )  <->  ( ( x  =/=  (/)  /\  y  =/=  (/) )  /\  (
x  i^i  y )  =  (/) ) )
15 ineq2 3694 . . . . . . . . . . . . . . . . . . 19  |-  ( y  =  ( U. J  \  x )  ->  (
x  i^i  y )  =  ( x  i^i  ( U. J  \  x ) ) )
16 disjdif 3899 . . . . . . . . . . . . . . . . . . 19  |-  ( x  i^i  ( U. J  \  x ) )  =  (/)
1715, 16syl6eq 2524 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  ( U. J  \  x )  ->  (
x  i^i  y )  =  (/) )
1817biantrud 507 . . . . . . . . . . . . . . . . 17  |-  ( y  =  ( U. J  \  x )  ->  (
( x  =/=  (/)  /\  y  =/=  (/) )  <->  ( (
x  =/=  (/)  /\  y  =/=  (/) )  /\  (
x  i^i  y )  =  (/) ) ) )
19 neeq1 2748 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  ( U. J  \  x )  ->  (
y  =/=  (/)  <->  ( U. J  \  x )  =/=  (/) ) )
2019anbi2d 703 . . . . . . . . . . . . . . . . 17  |-  ( y  =  ( U. J  \  x )  ->  (
( x  =/=  (/)  /\  y  =/=  (/) )  <->  ( x  =/=  (/)  /\  ( U. J  \  x )  =/=  (/) ) ) )
2118, 20bitr3d 255 . . . . . . . . . . . . . . . 16  |-  ( y  =  ( U. J  \  x )  ->  (
( ( x  =/=  (/)  /\  y  =/=  (/) )  /\  ( x  i^i  y
)  =  (/) )  <->  ( x  =/=  (/)  /\  ( U. J  \  x )  =/=  (/) ) ) )
2214, 21syl5bb 257 . . . . . . . . . . . . . . 15  |-  ( y  =  ( U. J  \  x )  ->  (
( x  =/=  (/)  /\  y  =/=  (/)  /\  ( x  i^i  y )  =  (/) )  <->  ( x  =/=  (/)  /\  ( U. J  \  x )  =/=  (/) ) ) )
23 uneq2 3652 . . . . . . . . . . . . . . . . 17  |-  ( y  =  ( U. J  \  x )  ->  (
x  u.  y )  =  ( x  u.  ( U. J  \  x ) ) )
24 undif2 3903 . . . . . . . . . . . . . . . . 17  |-  ( x  u.  ( U. J  \  x ) )  =  ( x  u.  U. J )
2523, 24syl6eq 2524 . . . . . . . . . . . . . . . 16  |-  ( y  =  ( U. J  \  x )  ->  (
x  u.  y )  =  ( x  u. 
U. J ) )
2625neeq1d 2744 . . . . . . . . . . . . . . 15  |-  ( y  =  ( U. J  \  x )  ->  (
( x  u.  y
)  =/=  U. J  <->  ( x  u.  U. J
)  =/=  U. J
) )
2722, 26imbi12d 320 . . . . . . . . . . . . . 14  |-  ( y  =  ( U. J  \  x )  ->  (
( ( x  =/=  (/)  /\  y  =/=  (/)  /\  (
x  i^i  y )  =  (/) )  ->  (
x  u.  y )  =/=  U. J )  <-> 
( ( x  =/=  (/)  /\  ( U. J  \  x )  =/=  (/) )  -> 
( x  u.  U. J )  =/=  U. J ) ) )
2827rspcv 3210 . . . . . . . . . . . . 13  |-  ( ( U. J  \  x
)  e.  J  -> 
( A. y  e.  J  ( ( x  =/=  (/)  /\  y  =/=  (/)  /\  ( x  i^i  y )  =  (/) )  ->  ( x  u.  y )  =/=  U. J )  ->  (
( x  =/=  (/)  /\  ( U. J  \  x
)  =/=  (/) )  -> 
( x  u.  U. J )  =/=  U. J ) ) )
2913, 28syl 16 . . . . . . . . . . . 12  |-  ( ( J  e.  Top  /\  x  e.  ( Clsd `  J ) )  -> 
( A. y  e.  J  ( ( x  =/=  (/)  /\  y  =/=  (/)  /\  ( x  i^i  y )  =  (/) )  ->  ( x  u.  y )  =/=  U. J )  ->  (
( x  =/=  (/)  /\  ( U. J  \  x
)  =/=  (/) )  -> 
( x  u.  U. J )  =/=  U. J ) ) )
301cldss 19312 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  ( Clsd `  J
)  ->  x  C_  U. J
)
3130adantl 466 . . . . . . . . . . . . . . . 16  |-  ( ( J  e.  Top  /\  x  e.  ( Clsd `  J ) )  ->  x  C_  U. J )
32 ssequn1 3674 . . . . . . . . . . . . . . . 16  |-  ( x 
C_  U. J  <->  ( x  u.  U. J )  = 
U. J )
3331, 32sylib 196 . . . . . . . . . . . . . . 15  |-  ( ( J  e.  Top  /\  x  e.  ( Clsd `  J ) )  -> 
( x  u.  U. J )  =  U. J )
34 ssdif0 3885 . . . . . . . . . . . . . . . 16  |-  ( U. J  C_  x  <->  ( U. J  \  x )  =  (/) )
35 idd 24 . . . . . . . . . . . . . . . . . 18  |-  ( ( J  e.  Top  /\  x  e.  ( Clsd `  J ) )  -> 
( U. J  C_  x  ->  U. J  C_  x
) )
3635, 31jctild 543 . . . . . . . . . . . . . . . . 17  |-  ( ( J  e.  Top  /\  x  e.  ( Clsd `  J ) )  -> 
( U. J  C_  x  ->  ( x  C_  U. J  /\  U. J  C_  x ) ) )
37 eqss 3519 . . . . . . . . . . . . . . . . 17  |-  ( x  =  U. J  <->  ( x  C_ 
U. J  /\  U. J  C_  x ) )
3836, 37syl6ibr 227 . . . . . . . . . . . . . . . 16  |-  ( ( J  e.  Top  /\  x  e.  ( Clsd `  J ) )  -> 
( U. J  C_  x  ->  x  =  U. J ) )
3934, 38syl5bir 218 . . . . . . . . . . . . . . 15  |-  ( ( J  e.  Top  /\  x  e.  ( Clsd `  J ) )  -> 
( ( U. J  \  x )  =  (/)  ->  x  =  U. J
) )
4033, 39embantd 54 . . . . . . . . . . . . . 14  |-  ( ( J  e.  Top  /\  x  e.  ( Clsd `  J ) )  -> 
( ( ( x  u.  U. J )  =  U. J  -> 
( U. J  \  x )  =  (/) )  ->  x  =  U. J ) )
4140orim2d 838 . . . . . . . . . . . . 13  |-  ( ( J  e.  Top  /\  x  e.  ( Clsd `  J ) )  -> 
( ( x  =  (/)  \/  ( ( x  u.  U. J )  =  U. J  -> 
( U. J  \  x )  =  (/) ) )  ->  (
x  =  (/)  \/  x  =  U. J ) ) )
42 impexp 446 . . . . . . . . . . . . . 14  |-  ( ( ( x  =/=  (/)  /\  ( U. J  \  x
)  =/=  (/) )  -> 
( x  u.  U. J )  =/=  U. J )  <->  ( x  =/=  (/)  ->  ( ( U. J  \  x
)  =/=  (/)  ->  (
x  u.  U. J
)  =/=  U. J
) ) )
43 df-ne 2664 . . . . . . . . . . . . . . . 16  |-  ( x  =/=  (/)  <->  -.  x  =  (/) )
44 id 22 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( U. J  \  x )  =/=  (/)  ->  (
x  u.  U. J
)  =/=  U. J
)  ->  ( ( U. J  \  x
)  =/=  (/)  ->  (
x  u.  U. J
)  =/=  U. J
) )
4544necon4d 2694 . . . . . . . . . . . . . . . . 17  |-  ( ( ( U. J  \  x )  =/=  (/)  ->  (
x  u.  U. J
)  =/=  U. J
)  ->  ( (
x  u.  U. J
)  =  U. J  ->  ( U. J  \  x )  =  (/) ) )
46 id 22 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( x  u.  U. J )  =  U. J  ->  ( U. J  \  x )  =  (/) )  ->  ( ( x  u.  U. J )  =  U. J  -> 
( U. J  \  x )  =  (/) ) )
4746necon3d 2691 . . . . . . . . . . . . . . . . 17  |-  ( ( ( x  u.  U. J )  =  U. J  ->  ( U. J  \  x )  =  (/) )  ->  ( ( U. J  \  x )  =/=  (/)  ->  ( x  u. 
U. J )  =/=  U. J ) )
4845, 47impbii 188 . . . . . . . . . . . . . . . 16  |-  ( ( ( U. J  \  x )  =/=  (/)  ->  (
x  u.  U. J
)  =/=  U. J
)  <->  ( ( x  u.  U. J )  =  U. J  -> 
( U. J  \  x )  =  (/) ) )
4943, 48imbi12i 326 . . . . . . . . . . . . . . 15  |-  ( ( x  =/=  (/)  ->  (
( U. J  \  x )  =/=  (/)  ->  (
x  u.  U. J
)  =/=  U. J
) )  <->  ( -.  x  =  (/)  ->  (
( x  u.  U. J )  =  U. J  ->  ( U. J  \  x )  =  (/) ) ) )
50 pm4.64 372 . . . . . . . . . . . . . . 15  |-  ( ( -.  x  =  (/)  ->  ( ( x  u. 
U. J )  = 
U. J  ->  ( U. J  \  x
)  =  (/) ) )  <-> 
( x  =  (/)  \/  ( ( x  u. 
U. J )  = 
U. J  ->  ( U. J  \  x
)  =  (/) ) ) )
5149, 50bitri 249 . . . . . . . . . . . . . 14  |-  ( ( x  =/=  (/)  ->  (
( U. J  \  x )  =/=  (/)  ->  (
x  u.  U. J
)  =/=  U. J
) )  <->  ( x  =  (/)  \/  ( ( x  u.  U. J
)  =  U. J  ->  ( U. J  \  x )  =  (/) ) ) )
5242, 51bitri 249 . . . . . . . . . . . . 13  |-  ( ( ( x  =/=  (/)  /\  ( U. J  \  x
)  =/=  (/) )  -> 
( x  u.  U. J )  =/=  U. J )  <->  ( x  =  (/)  \/  ( ( x  u.  U. J
)  =  U. J  ->  ( U. J  \  x )  =  (/) ) ) )
53 vex 3116 . . . . . . . . . . . . . 14  |-  x  e. 
_V
5453elpr 4045 . . . . . . . . . . . . 13  |-  ( x  e.  { (/) ,  U. J }  <->  ( x  =  (/)  \/  x  =  U. J ) )
5541, 52, 543imtr4g 270 . . . . . . . . . . . 12  |-  ( ( J  e.  Top  /\  x  e.  ( Clsd `  J ) )  -> 
( ( ( x  =/=  (/)  /\  ( U. J  \  x )  =/=  (/) )  ->  ( x  u.  U. J )  =/=  U. J )  ->  x  e.  { (/)
,  U. J } ) )
5629, 55syld 44 . . . . . . . . . . 11  |-  ( ( J  e.  Top  /\  x  e.  ( Clsd `  J ) )  -> 
( A. y  e.  J  ( ( x  =/=  (/)  /\  y  =/=  (/)  /\  ( x  i^i  y )  =  (/) )  ->  ( x  u.  y )  =/=  U. J )  ->  x  e.  { (/) ,  U. J } ) )
5756ex 434 . . . . . . . . . 10  |-  ( J  e.  Top  ->  (
x  e.  ( Clsd `  J )  ->  ( A. y  e.  J  ( ( x  =/=  (/)  /\  y  =/=  (/)  /\  (
x  i^i  y )  =  (/) )  ->  (
x  u.  y )  =/=  U. J )  ->  x  e.  { (/)
,  U. J } ) ) )
5857com23 78 . . . . . . . . 9  |-  ( J  e.  Top  ->  ( A. y  e.  J  ( ( x  =/=  (/)  /\  y  =/=  (/)  /\  (
x  i^i  y )  =  (/) )  ->  (
x  u.  y )  =/=  U. J )  ->  ( x  e.  ( Clsd `  J
)  ->  x  e.  {
(/) ,  U. J }
) ) )
5958imim2d 52 . . . . . . . 8  |-  ( J  e.  Top  ->  (
( x  e.  J  ->  A. y  e.  J  ( ( x  =/=  (/)  /\  y  =/=  (/)  /\  (
x  i^i  y )  =  (/) )  ->  (
x  u.  y )  =/=  U. J ) )  ->  ( x  e.  J  ->  ( x  e.  ( Clsd `  J
)  ->  x  e.  {
(/) ,  U. J }
) ) ) )
60 elin 3687 . . . . . . . . . 10  |-  ( x  e.  ( J  i^i  ( Clsd `  J )
)  <->  ( x  e.  J  /\  x  e.  ( Clsd `  J
) ) )
6160imbi1i 325 . . . . . . . . 9  |-  ( ( x  e.  ( J  i^i  ( Clsd `  J
) )  ->  x  e.  { (/) ,  U. J } )  <->  ( (
x  e.  J  /\  x  e.  ( Clsd `  J ) )  ->  x  e.  { (/) ,  U. J } ) )
62 impexp 446 . . . . . . . . 9  |-  ( ( ( x  e.  J  /\  x  e.  ( Clsd `  J ) )  ->  x  e.  { (/)
,  U. J } )  <-> 
( x  e.  J  ->  ( x  e.  (
Clsd `  J )  ->  x  e.  { (/) , 
U. J } ) ) )
6361, 62bitri 249 . . . . . . . 8  |-  ( ( x  e.  ( J  i^i  ( Clsd `  J
) )  ->  x  e.  { (/) ,  U. J } )  <->  ( x  e.  J  ->  ( x  e.  ( Clsd `  J
)  ->  x  e.  {
(/) ,  U. J }
) ) )
6459, 63syl6ibr 227 . . . . . . 7  |-  ( J  e.  Top  ->  (
( x  e.  J  ->  A. y  e.  J  ( ( x  =/=  (/)  /\  y  =/=  (/)  /\  (
x  i^i  y )  =  (/) )  ->  (
x  u.  y )  =/=  U. J ) )  ->  ( x  e.  ( J  i^i  ( Clsd `  J ) )  ->  x  e.  { (/)
,  U. J } ) ) )
6564alimdv 1685 . . . . . 6  |-  ( J  e.  Top  ->  ( A. x ( x  e.  J  ->  A. y  e.  J  ( (
x  =/=  (/)  /\  y  =/=  (/)  /\  ( x  i^i  y )  =  (/) )  ->  ( x  u.  y )  =/=  U. J ) )  ->  A. x ( x  e.  ( J  i^i  ( Clsd `  J ) )  ->  x  e.  { (/)
,  U. J } ) ) )
66 df-ral 2819 . . . . . 6  |-  ( A. x  e.  J  A. y  e.  J  (
( x  =/=  (/)  /\  y  =/=  (/)  /\  ( x  i^i  y )  =  (/) )  ->  ( x  u.  y )  =/=  U. J )  <->  A. x
( x  e.  J  ->  A. y  e.  J  ( ( x  =/=  (/)  /\  y  =/=  (/)  /\  (
x  i^i  y )  =  (/) )  ->  (
x  u.  y )  =/=  U. J ) ) )
67 dfss2 3493 . . . . . 6  |-  ( ( J  i^i  ( Clsd `  J ) )  C_  {
(/) ,  U. J }  <->  A. x ( x  e.  ( J  i^i  ( Clsd `  J ) )  ->  x  e.  { (/)
,  U. J } ) )
6865, 66, 673imtr4g 270 . . . . 5  |-  ( J  e.  Top  ->  ( A. x  e.  J  A. y  e.  J  ( ( x  =/=  (/)  /\  y  =/=  (/)  /\  (
x  i^i  y )  =  (/) )  ->  (
x  u.  y )  =/=  U. J )  ->  ( J  i^i  ( Clsd `  J )
)  C_  { (/) ,  U. J } ) )
691iscon2 19697 . . . . . 6  |-  ( J  e.  Con  <->  ( J  e.  Top  /\  ( J  i^i  ( Clsd `  J
) )  C_  { (/) , 
U. J } ) )
7069baib 901 . . . . 5  |-  ( J  e.  Top  ->  ( J  e.  Con  <->  ( J  i^i  ( Clsd `  J
) )  C_  { (/) , 
U. J } ) )
7168, 70sylibrd 234 . . . 4  |-  ( J  e.  Top  ->  ( A. x  e.  J  A. y  e.  J  ( ( x  =/=  (/)  /\  y  =/=  (/)  /\  (
x  i^i  y )  =  (/) )  ->  (
x  u.  y )  =/=  U. J )  ->  J  e.  Con ) )
7211, 71syl 16 . . 3  |-  ( J  e.  (TopOn `  X
)  ->  ( A. x  e.  J  A. y  e.  J  (
( x  =/=  (/)  /\  y  =/=  (/)  /\  ( x  i^i  y )  =  (/) )  ->  ( x  u.  y )  =/=  U. J )  ->  J  e.  Con ) )
7310, 72impbid2 204 . 2  |-  ( J  e.  (TopOn `  X
)  ->  ( J  e.  Con  <->  A. x  e.  J  A. y  e.  J  ( ( x  =/=  (/)  /\  y  =/=  (/)  /\  (
x  i^i  y )  =  (/) )  ->  (
x  u.  y )  =/=  U. J ) ) )
74 toponuni 19211 . . . . 5  |-  ( J  e.  (TopOn `  X
)  ->  X  =  U. J )
7574neeq2d 2745 . . . 4  |-  ( J  e.  (TopOn `  X
)  ->  ( (
x  u.  y )  =/=  X  <->  ( x  u.  y )  =/=  U. J ) )
7675imbi2d 316 . . 3  |-  ( J  e.  (TopOn `  X
)  ->  ( (
( x  =/=  (/)  /\  y  =/=  (/)  /\  ( x  i^i  y )  =  (/) )  ->  ( x  u.  y )  =/= 
X )  <->  ( (
x  =/=  (/)  /\  y  =/=  (/)  /\  ( x  i^i  y )  =  (/) )  ->  ( x  u.  y )  =/=  U. J ) ) )
77762ralbidv 2908 . 2  |-  ( J  e.  (TopOn `  X
)  ->  ( A. x  e.  J  A. y  e.  J  (
( x  =/=  (/)  /\  y  =/=  (/)  /\  ( x  i^i  y )  =  (/) )  ->  ( x  u.  y )  =/= 
X )  <->  A. x  e.  J  A. y  e.  J  ( (
x  =/=  (/)  /\  y  =/=  (/)  /\  ( x  i^i  y )  =  (/) )  ->  ( x  u.  y )  =/=  U. J ) ) )
7873, 77bitr4d 256 1  |-  ( J  e.  (TopOn `  X
)  ->  ( J  e.  Con  <->  A. x  e.  J  A. y  e.  J  ( ( x  =/=  (/)  /\  y  =/=  (/)  /\  (
x  i^i  y )  =  (/) )  ->  (
x  u.  y )  =/=  X ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 973   A.wal 1377    = wceq 1379    e. wcel 1767    =/= wne 2662   A.wral 2814    \ cdif 3473    u. cun 3474    i^i cin 3475    C_ wss 3476   (/)c0 3785   {cpr 4029   U.cuni 4245   ` cfv 5587   Topctop 19177  TopOnctopon 19178   Clsdccld 19299   Conccon 19694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6575
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-sbc 3332  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-iota 5550  df-fun 5589  df-fn 5590  df-fv 5595  df-top 19182  df-topon 19185  df-cld 19302  df-con 19695
This theorem is referenced by:  consuba  19703  pconcon  28332
  Copyright terms: Public domain W3C validator