MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfco2a Structured version   Unicode version

Theorem dfco2a 5449
Description: Generalization of dfco2 5448, where  C can have any value between  dom  A  i^i  ran 
B and  _V. (Contributed by NM, 21-Dec-2008.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
dfco2a  |-  ( ( dom  A  i^i  ran  B )  C_  C  ->  ( A  o.  B )  =  U_ x  e.  C  ( ( `' B " { x } )  X.  ( A " { x }
) ) )
Distinct variable groups:    x, A    x, B    x, C

Proof of Theorem dfco2a
Dummy variables  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfco2 5448 . 2  |-  ( A  o.  B )  = 
U_ x  e.  _V  ( ( `' B " { x } )  X.  ( A " { x } ) )
2 vex 3081 . . . . . . . . . . . . . 14  |-  x  e. 
_V
3 vex 3081 . . . . . . . . . . . . . . 15  |-  z  e. 
_V
43eliniseg 5309 . . . . . . . . . . . . . 14  |-  ( x  e.  _V  ->  (
z  e.  ( `' B " { x } )  <->  z B x ) )
52, 4ax-mp 5 . . . . . . . . . . . . 13  |-  ( z  e.  ( `' B " { x } )  <-> 
z B x )
63, 2brelrn 5181 . . . . . . . . . . . . 13  |-  ( z B x  ->  x  e.  ran  B )
75, 6sylbi 195 . . . . . . . . . . . 12  |-  ( z  e.  ( `' B " { x } )  ->  x  e.  ran  B )
8 vex 3081 . . . . . . . . . . . . . 14  |-  w  e. 
_V
92, 8elimasn 5305 . . . . . . . . . . . . 13  |-  ( w  e.  ( A " { x } )  <->  <. x ,  w >.  e.  A )
102, 8opeldm 5154 . . . . . . . . . . . . 13  |-  ( <.
x ,  w >.  e.  A  ->  x  e.  dom  A )
119, 10sylbi 195 . . . . . . . . . . . 12  |-  ( w  e.  ( A " { x } )  ->  x  e.  dom  A )
127, 11anim12ci 567 . . . . . . . . . . 11  |-  ( ( z  e.  ( `' B " { x } )  /\  w  e.  ( A " {
x } ) )  ->  ( x  e. 
dom  A  /\  x  e.  ran  B ) )
1312adantl 466 . . . . . . . . . 10  |-  ( ( y  =  <. z ,  w >.  /\  (
z  e.  ( `' B " { x } )  /\  w  e.  ( A " {
x } ) ) )  ->  ( x  e.  dom  A  /\  x  e.  ran  B ) )
1413exlimivv 1690 . . . . . . . . 9  |-  ( E. z E. w ( y  =  <. z ,  w >.  /\  (
z  e.  ( `' B " { x } )  /\  w  e.  ( A " {
x } ) ) )  ->  ( x  e.  dom  A  /\  x  e.  ran  B ) )
15 elxp 4968 . . . . . . . . 9  |-  ( y  e.  ( ( `' B " { x } )  X.  ( A " { x }
) )  <->  E. z E. w ( y  = 
<. z ,  w >.  /\  ( z  e.  ( `' B " { x } )  /\  w  e.  ( A " {
x } ) ) ) )
16 elin 3650 . . . . . . . . 9  |-  ( x  e.  ( dom  A  i^i  ran  B )  <->  ( x  e.  dom  A  /\  x  e.  ran  B ) )
1714, 15, 163imtr4i 266 . . . . . . . 8  |-  ( y  e.  ( ( `' B " { x } )  X.  ( A " { x }
) )  ->  x  e.  ( dom  A  i^i  ran 
B ) )
18 ssel 3461 . . . . . . . 8  |-  ( ( dom  A  i^i  ran  B )  C_  C  ->  ( x  e.  ( dom 
A  i^i  ran  B )  ->  x  e.  C
) )
1917, 18syl5 32 . . . . . . 7  |-  ( ( dom  A  i^i  ran  B )  C_  C  ->  ( y  e.  ( ( `' B " { x } )  X.  ( A " { x }
) )  ->  x  e.  C ) )
2019pm4.71rd 635 . . . . . 6  |-  ( ( dom  A  i^i  ran  B )  C_  C  ->  ( y  e.  ( ( `' B " { x } )  X.  ( A " { x }
) )  <->  ( x  e.  C  /\  y  e.  ( ( `' B " { x } )  X.  ( A " { x } ) ) ) ) )
2120exbidv 1681 . . . . 5  |-  ( ( dom  A  i^i  ran  B )  C_  C  ->  ( E. x  y  e.  ( ( `' B " { x } )  X.  ( A " { x } ) )  <->  E. x ( x  e.  C  /\  y  e.  ( ( `' B " { x } )  X.  ( A " { x } ) ) ) ) )
22 rexv 3093 . . . . 5  |-  ( E. x  e.  _V  y  e.  ( ( `' B " { x } )  X.  ( A " { x } ) )  <->  E. x  y  e.  ( ( `' B " { x } )  X.  ( A " { x } ) ) )
23 df-rex 2805 . . . . 5  |-  ( E. x  e.  C  y  e.  ( ( `' B " { x } )  X.  ( A " { x }
) )  <->  E. x
( x  e.  C  /\  y  e.  (
( `' B " { x } )  X.  ( A " { x } ) ) ) )
2421, 22, 233bitr4g 288 . . . 4  |-  ( ( dom  A  i^i  ran  B )  C_  C  ->  ( E. x  e.  _V  y  e.  ( ( `' B " { x } )  X.  ( A " { x }
) )  <->  E. x  e.  C  y  e.  ( ( `' B " { x } )  X.  ( A " { x } ) ) ) )
25 eliun 4286 . . . 4  |-  ( y  e.  U_ x  e. 
_V  ( ( `' B " { x } )  X.  ( A " { x }
) )  <->  E. x  e.  _V  y  e.  ( ( `' B " { x } )  X.  ( A " { x } ) ) )
26 eliun 4286 . . . 4  |-  ( y  e.  U_ x  e.  C  ( ( `' B " { x } )  X.  ( A " { x }
) )  <->  E. x  e.  C  y  e.  ( ( `' B " { x } )  X.  ( A " { x } ) ) )
2724, 25, 263bitr4g 288 . . 3  |-  ( ( dom  A  i^i  ran  B )  C_  C  ->  ( y  e.  U_ x  e.  _V  ( ( `' B " { x } )  X.  ( A " { x }
) )  <->  y  e.  U_ x  e.  C  ( ( `' B " { x } )  X.  ( A " { x } ) ) ) )
2827eqrdv 2451 . 2  |-  ( ( dom  A  i^i  ran  B )  C_  C  ->  U_ x  e.  _V  (
( `' B " { x } )  X.  ( A " { x } ) )  =  U_ x  e.  C  ( ( `' B " { x } )  X.  ( A " { x }
) ) )
291, 28syl5eq 2507 1  |-  ( ( dom  A  i^i  ran  B )  C_  C  ->  ( A  o.  B )  =  U_ x  e.  C  ( ( `' B " { x } )  X.  ( A " { x }
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1370   E.wex 1587    e. wcel 1758   E.wrex 2800   _Vcvv 3078    i^i cin 3438    C_ wss 3439   {csn 3988   <.cop 3994   U_ciun 4282   class class class wbr 4403    X. cxp 4949   `'ccnv 4950   dom cdm 4951   ran crn 4952   "cima 4954    o. ccom 4955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4524  ax-nul 4532  ax-pr 4642
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-ral 2804  df-rex 2805  df-rab 2808  df-v 3080  df-sbc 3295  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-nul 3749  df-if 3903  df-sn 3989  df-pr 3991  df-op 3995  df-iun 4284  df-br 4404  df-opab 4462  df-xp 4957  df-rel 4958  df-cnv 4959  df-co 4960  df-dm 4961  df-rn 4962  df-res 4963  df-ima 4964
This theorem is referenced by:  fparlem3  6787  fparlem4  6788
  Copyright terms: Public domain W3C validator