Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfbigcup2 Structured version   Visualization version   Unicode version

Theorem dfbigcup2 30715
Description:  Bigcup using maps-to notation. (Contributed by Scott Fenton, 16-Apr-2012.)
Assertion
Ref Expression
dfbigcup2  |-  Bigcup  =  ( x  e.  _V  |->  U. x )

Proof of Theorem dfbigcup2
Dummy variables  y 
z  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relbigcup 30713 . 2  |-  Rel  Bigcup
2 mptrel 4980 . 2  |-  Rel  (
x  e.  _V  |->  U. x )
3 eqcom 2469 . . 3  |-  ( U. y  =  z  <->  z  =  U. y )
4 vex 3060 . . . 4  |-  z  e. 
_V
54brbigcup 30714 . . 3  |-  ( y
Bigcup z  <->  U. y  =  z )
6 vex 3060 . . . 4  |-  y  e. 
_V
7 eleq1 2528 . . . . . 6  |-  ( x  =  y  ->  (
x  e.  _V  <->  y  e.  _V ) )
8 unieq 4220 . . . . . . 7  |-  ( x  =  y  ->  U. x  =  U. y )
98eqeq2d 2472 . . . . . 6  |-  ( x  =  y  ->  (
t  =  U. x  <->  t  =  U. y ) )
107, 9anbi12d 722 . . . . 5  |-  ( x  =  y  ->  (
( x  e.  _V  /\  t  =  U. x
)  <->  ( y  e. 
_V  /\  t  =  U. y ) ) )
116biantrur 513 . . . . 5  |-  ( t  =  U. y  <->  ( y  e.  _V  /\  t  = 
U. y ) )
1210, 11syl6bbr 271 . . . 4  |-  ( x  =  y  ->  (
( x  e.  _V  /\  t  =  U. x
)  <->  t  =  U. y ) )
13 eqeq1 2466 . . . 4  |-  ( t  =  z  ->  (
t  =  U. y  <->  z  =  U. y ) )
14 df-mpt 4477 . . . 4  |-  ( x  e.  _V  |->  U. x
)  =  { <. x ,  t >.  |  ( x  e.  _V  /\  t  =  U. x
) }
156, 4, 12, 13, 14brab 4738 . . 3  |-  ( y ( x  e.  _V  |->  U. x ) z  <->  z  =  U. y )
163, 5, 153bitr4i 285 . 2  |-  ( y
Bigcup z  <->  y ( x  e.  _V  |->  U. x
) z )
171, 2, 16eqbrriv 4949 1  |-  Bigcup  =  ( x  e.  _V  |->  U. x )
Colors of variables: wff setvar class
Syntax hints:    /\ wa 375    = wceq 1455    e. wcel 1898   _Vcvv 3057   U.cuni 4212   class class class wbr 4416    |-> cmpt 4475   Bigcupcbigcup 30649
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1680  ax-4 1693  ax-5 1769  ax-6 1816  ax-7 1862  ax-8 1900  ax-9 1907  ax-10 1926  ax-11 1931  ax-12 1944  ax-13 2102  ax-ext 2442  ax-sep 4539  ax-nul 4548  ax-pow 4595  ax-pr 4653  ax-un 6610
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-3an 993  df-tru 1458  df-ex 1675  df-nf 1679  df-sb 1809  df-eu 2314  df-mo 2315  df-clab 2449  df-cleq 2455  df-clel 2458  df-nfc 2592  df-ne 2635  df-ral 2754  df-rex 2755  df-rab 2758  df-v 3059  df-sbc 3280  df-dif 3419  df-un 3421  df-in 3423  df-ss 3430  df-symdif 3675  df-nul 3744  df-if 3894  df-pw 3965  df-sn 3981  df-pr 3983  df-op 3987  df-uni 4213  df-br 4417  df-opab 4476  df-mpt 4477  df-eprel 4764  df-id 4768  df-xp 4859  df-rel 4860  df-cnv 4861  df-co 4862  df-dm 4863  df-rn 4864  df-res 4865  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-fo 5607  df-fv 5609  df-1st 6820  df-2nd 6821  df-txp 30669  df-bigcup 30673
This theorem is referenced by:  fobigcup  30716
  Copyright terms: Public domain W3C validator