Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfafv2 Unicode version

Theorem dfafv2 27863
Description: Alternative definition of  ( F''' A ) using  ( F `  A ) directly. (Contributed by Alexander van der Vekens, 22-Jul-2017.)
Assertion
Ref Expression
dfafv2  |-  ( F''' A )  =  if ( F defAt  A , 
( F `  A
) ,  _V )

Proof of Theorem dfafv2
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 df-afv 27842 . 2  |-  ( F''' A )  =  if ( F defAt  A , 
( iota x A F x ) ,  _V )
2 df-fv 5421 . . . 4  |-  ( F `
 A )  =  ( iota x A F x )
32eqcomi 2408 . . 3  |-  ( iota
x A F x )  =  ( F `
 A )
4 ifeq1 3703 . . 3  |-  ( ( iota x A F x )  =  ( F `  A )  ->  if ( F defAt 
A ,  ( iota
x A F x ) ,  _V )  =  if ( F defAt  A ,  ( F `  A ) ,  _V ) )
53, 4ax-mp 8 . 2  |-  if ( F defAt  A ,  ( iota x A F x ) ,  _V )  =  if ( F defAt  A ,  ( F `
 A ) ,  _V )
61, 5eqtri 2424 1  |-  ( F''' A )  =  if ( F defAt  A , 
( F `  A
) ,  _V )
Colors of variables: wff set class
Syntax hints:    = wceq 1649   _Vcvv 2916   ifcif 3699   class class class wbr 4172   iotacio 5375   ` cfv 5413   defAt wdfat 27838  '''cafv 27839
This theorem is referenced by:  afveq12d  27864  nfafv  27867  afvfundmfveq  27869  afvnfundmuv  27870  afvpcfv0  27877
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-rab 2675  df-v 2918  df-un 3285  df-if 3700  df-fv 5421  df-afv 27842
  Copyright terms: Public domain W3C validator