Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfafn5a Structured version   Unicode version

Theorem dfafn5a 32406
 Description: Representation of a function in terms of its values, analogous to dffn5 5918 (only one direction of implication!). (Contributed by Alexander van der Vekens, 25-May-2017.)
Assertion
Ref Expression
dfafn5a '''
Distinct variable groups:   ,   ,

Proof of Theorem dfafn5a
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 fnrel 5685 . . . 4
2 dfrel4v 5464 . . . 4
31, 2sylib 196 . . 3
4 fnbr 5689 . . . . . . 7
54ex 434 . . . . . 6
65pm4.71rd 635 . . . . 5
7 eqcom 2466 . . . . . . 7 ''' '''
8 fnbrafvb 32400 . . . . . . 7 '''
97, 8syl5bb 257 . . . . . 6 '''
109pm5.32da 641 . . . . 5 '''
116, 10bitr4d 256 . . . 4 '''
1211opabbidv 4520 . . 3 '''
133, 12eqtrd 2498 . 2 '''
14 df-mpt 4517 . 2 ''' '''
1513, 14syl6eqr 2516 1 '''
 Colors of variables: wff setvar class Syntax hints:   wi 4   wa 369   wceq 1395   wcel 1819   class class class wbr 4456  copab 4514   cmpt 4515   wrel 5013   wfn 5589  '''cafv 32360 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pr 4695 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-sbc 3328  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3794  df-if 3945  df-sn 4033  df-pr 4035  df-op 4039  df-uni 4252  df-br 4457  df-opab 4516  df-mpt 4517  df-id 4804  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-res 5020  df-iota 5557  df-fun 5596  df-fn 5597  df-fv 5602  df-dfat 32362  df-afv 32363 This theorem is referenced by:  dfafn5b  32407  fnrnafv  32408
 Copyright terms: Public domain W3C validator