MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfac8b Structured version   Unicode version

Theorem dfac8b 8401
Description: The well-ordering theorem: every numerable set is well-orderable. (Contributed by Mario Carneiro, 5-Jan-2013.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
dfac8b  |-  ( A  e.  dom  card  ->  E. x  x  We  A
)
Distinct variable group:    x, A

Proof of Theorem dfac8b
Dummy variables  w  f  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cardid2 8323 . . 3  |-  ( A  e.  dom  card  ->  (
card `  A )  ~~  A )
2 bren 7515 . . 3  |-  ( (
card `  A )  ~~  A  <->  E. f  f : ( card `  A
)
-1-1-onto-> A )
31, 2sylib 196 . 2  |-  ( A  e.  dom  card  ->  E. f  f : (
card `  A ) -1-1-onto-> A
)
4 xpexg 6702 . . . . . 6  |-  ( ( A  e.  dom  card  /\  A  e.  dom  card )  ->  ( A  X.  A )  e.  _V )
54anidms 645 . . . . 5  |-  ( A  e.  dom  card  ->  ( A  X.  A )  e.  _V )
6 incom 3684 . . . . . 6  |-  ( {
<. z ,  w >.  |  ( `' f `  z )  _E  ( `' f `  w
) }  i^i  ( A  X.  A ) )  =  ( ( A  X.  A )  i^i 
{ <. z ,  w >.  |  ( `' f `
 z )  _E  ( `' f `  w ) } )
7 inex1g 4583 . . . . . 6  |-  ( ( A  X.  A )  e.  _V  ->  (
( A  X.  A
)  i^i  { <. z ,  w >.  |  ( `' f `  z
)  _E  ( `' f `  w ) } )  e.  _V )
86, 7syl5eqel 2552 . . . . 5  |-  ( ( A  X.  A )  e.  _V  ->  ( { <. z ,  w >.  |  ( `' f `
 z )  _E  ( `' f `  w ) }  i^i  ( A  X.  A
) )  e.  _V )
95, 8syl 16 . . . 4  |-  ( A  e.  dom  card  ->  ( { <. z ,  w >.  |  ( `' f `
 z )  _E  ( `' f `  w ) }  i^i  ( A  X.  A
) )  e.  _V )
10 f1ocnv 5819 . . . . . 6  |-  ( f : ( card `  A
)
-1-1-onto-> A  ->  `' f : A -1-1-onto-> ( card `  A
) )
11 cardon 8314 . . . . . . . 8  |-  ( card `  A )  e.  On
1211onordi 4975 . . . . . . 7  |-  Ord  ( card `  A )
13 ordwe 4884 . . . . . . 7  |-  ( Ord  ( card `  A
)  ->  _E  We  ( card `  A )
)
1412, 13ax-mp 5 . . . . . 6  |-  _E  We  ( card `  A )
15 eqid 2460 . . . . . . 7  |-  { <. z ,  w >.  |  ( `' f `  z
)  _E  ( `' f `  w ) }  =  { <. z ,  w >.  |  ( `' f `  z
)  _E  ( `' f `  w ) }
1615f1owe 6228 . . . . . 6  |-  ( `' f : A -1-1-onto-> ( card `  A )  ->  (  _E  We  ( card `  A
)  ->  { <. z ,  w >.  |  ( `' f `  z
)  _E  ( `' f `  w ) }  We  A ) )
1710, 14, 16mpisyl 18 . . . . 5  |-  ( f : ( card `  A
)
-1-1-onto-> A  ->  { <. z ,  w >.  |  ( `' f `  z
)  _E  ( `' f `  w ) }  We  A )
18 weinxp 5059 . . . . 5  |-  ( {
<. z ,  w >.  |  ( `' f `  z )  _E  ( `' f `  w
) }  We  A  <->  ( { <. z ,  w >.  |  ( `' f `
 z )  _E  ( `' f `  w ) }  i^i  ( A  X.  A
) )  We  A
)
1917, 18sylib 196 . . . 4  |-  ( f : ( card `  A
)
-1-1-onto-> A  ->  ( { <. z ,  w >.  |  ( `' f `  z
)  _E  ( `' f `  w ) }  i^i  ( A  X.  A ) )  We  A )
20 weeq1 4860 . . . . 5  |-  ( x  =  ( { <. z ,  w >.  |  ( `' f `  z
)  _E  ( `' f `  w ) }  i^i  ( A  X.  A ) )  ->  ( x  We  A  <->  ( { <. z ,  w >.  |  ( `' f `  z
)  _E  ( `' f `  w ) }  i^i  ( A  X.  A ) )  We  A ) )
2120spcegv 3192 . . . 4  |-  ( ( { <. z ,  w >.  |  ( `' f `
 z )  _E  ( `' f `  w ) }  i^i  ( A  X.  A
) )  e.  _V  ->  ( ( { <. z ,  w >.  |  ( `' f `  z
)  _E  ( `' f `  w ) }  i^i  ( A  X.  A ) )  We  A  ->  E. x  x  We  A )
)
229, 19, 21syl2im 38 . . 3  |-  ( A  e.  dom  card  ->  ( f : ( card `  A ) -1-1-onto-> A  ->  E. x  x  We  A )
)
2322exlimdv 1695 . 2  |-  ( A  e.  dom  card  ->  ( E. f  f : ( card `  A
)
-1-1-onto-> A  ->  E. x  x  We  A ) )
243, 23mpd 15 1  |-  ( A  e.  dom  card  ->  E. x  x  We  A
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4   E.wex 1591    e. wcel 1762   _Vcvv 3106    i^i cin 3468   class class class wbr 4440   {copab 4497    _E cep 4782    We wwe 4830   Ord word 4870    X. cxp 4990   `'ccnv 4991   dom cdm 4992   -1-1-onto->wf1o 5578   ` cfv 5579    ~~ cen 7503   cardccrd 8305
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-rep 4551  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3108  df-sbc 3325  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-pss 3485  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-tp 4025  df-op 4027  df-uni 4239  df-int 4276  df-br 4441  df-opab 4499  df-mpt 4500  df-tr 4534  df-eprel 4784  df-id 4788  df-po 4793  df-so 4794  df-fr 4831  df-we 4833  df-ord 4874  df-on 4875  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-isom 5588  df-en 7507  df-card 8309
This theorem is referenced by:  ween  8405  ac5num  8406  dfac8  8504
  Copyright terms: Public domain W3C validator