MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfac8alem Structured version   Unicode version

Theorem dfac8alem 8199
Description: Lemma for dfac8a 8200. If the power set of a set has a choice function, then the set is numerable. (Contributed by NM, 10-Feb-1997.) (Revised by Mario Carneiro, 5-Jan-2013.)
Hypotheses
Ref Expression
dfac8alem.2  |-  F  = recs ( G )
dfac8alem.3  |-  G  =  ( f  e.  _V  |->  ( g `  ( A  \  ran  f ) ) )
Assertion
Ref Expression
dfac8alem  |-  ( A  e.  C  ->  ( E. g A. y  e. 
~P  A ( y  =/=  (/)  ->  ( g `  y )  e.  y )  ->  A  e.  dom  card ) )
Distinct variable groups:    f, g,
y, A    C, g    f, F, y
Allowed substitution hints:    C( y, f)    F( g)    G( y, f, g)

Proof of Theorem dfac8alem
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elex 2981 . . 3  |-  ( A  e.  C  ->  A  e.  _V )
2 difss 3483 . . . . . . . . . . . 12  |-  ( A 
\  ( F "
x ) )  C_  A
3 elpw2g 4455 . . . . . . . . . . . 12  |-  ( A  e.  _V  ->  (
( A  \  ( F " x ) )  e.  ~P A  <->  ( A  \  ( F " x
) )  C_  A
) )
42, 3mpbiri 233 . . . . . . . . . . 11  |-  ( A  e.  _V  ->  ( A  \  ( F "
x ) )  e. 
~P A )
5 neeq1 2616 . . . . . . . . . . . . 13  |-  ( y  =  ( A  \ 
( F " x
) )  ->  (
y  =/=  (/)  <->  ( A  \  ( F " x
) )  =/=  (/) ) )
6 fveq2 5691 . . . . . . . . . . . . . 14  |-  ( y  =  ( A  \ 
( F " x
) )  ->  (
g `  y )  =  ( g `  ( A  \  ( F " x ) ) ) )
7 id 22 . . . . . . . . . . . . . 14  |-  ( y  =  ( A  \ 
( F " x
) )  ->  y  =  ( A  \ 
( F " x
) ) )
86, 7eleq12d 2511 . . . . . . . . . . . . 13  |-  ( y  =  ( A  \ 
( F " x
) )  ->  (
( g `  y
)  e.  y  <->  ( g `  ( A  \  ( F " x ) ) )  e.  ( A 
\  ( F "
x ) ) ) )
95, 8imbi12d 320 . . . . . . . . . . . 12  |-  ( y  =  ( A  \ 
( F " x
) )  ->  (
( y  =/=  (/)  ->  (
g `  y )  e.  y )  <->  ( ( A  \  ( F "
x ) )  =/=  (/)  ->  ( g `  ( A  \  ( F " x ) ) )  e.  ( A 
\  ( F "
x ) ) ) ) )
109rspcv 3069 . . . . . . . . . . 11  |-  ( ( A  \  ( F
" x ) )  e.  ~P A  -> 
( A. y  e. 
~P  A ( y  =/=  (/)  ->  ( g `  y )  e.  y )  ->  ( ( A  \  ( F "
x ) )  =/=  (/)  ->  ( g `  ( A  \  ( F " x ) ) )  e.  ( A 
\  ( F "
x ) ) ) ) )
114, 10syl 16 . . . . . . . . . 10  |-  ( A  e.  _V  ->  ( A. y  e.  ~P  A ( y  =/=  (/)  ->  ( g `  y )  e.  y )  ->  ( ( A  \  ( F "
x ) )  =/=  (/)  ->  ( g `  ( A  \  ( F " x ) ) )  e.  ( A 
\  ( F "
x ) ) ) ) )
12113imp 1181 . . . . . . . . 9  |-  ( ( A  e.  _V  /\  A. y  e.  ~P  A
( y  =/=  (/)  ->  (
g `  y )  e.  y )  /\  ( A  \  ( F "
x ) )  =/=  (/) )  ->  ( g `
 ( A  \ 
( F " x
) ) )  e.  ( A  \  ( F " x ) ) )
13 dfac8alem.2 . . . . . . . . . . . 12  |-  F  = recs ( G )
1413tfr2 6857 . . . . . . . . . . 11  |-  ( x  e.  On  ->  ( F `  x )  =  ( G `  ( F  |`  x ) ) )
1513tfr1 6856 . . . . . . . . . . . . . 14  |-  F  Fn  On
16 fnfun 5508 . . . . . . . . . . . . . 14  |-  ( F  Fn  On  ->  Fun  F )
1715, 16ax-mp 5 . . . . . . . . . . . . 13  |-  Fun  F
18 vex 2975 . . . . . . . . . . . . 13  |-  x  e. 
_V
19 resfunexg 5943 . . . . . . . . . . . . 13  |-  ( ( Fun  F  /\  x  e.  _V )  ->  ( F  |`  x )  e. 
_V )
2017, 18, 19mp2an 672 . . . . . . . . . . . 12  |-  ( F  |`  x )  e.  _V
21 rneq 5065 . . . . . . . . . . . . . . . 16  |-  ( f  =  ( F  |`  x )  ->  ran  f  =  ran  ( F  |`  x ) )
22 df-ima 4853 . . . . . . . . . . . . . . . 16  |-  ( F
" x )  =  ran  ( F  |`  x )
2321, 22syl6eqr 2493 . . . . . . . . . . . . . . 15  |-  ( f  =  ( F  |`  x )  ->  ran  f  =  ( F " x ) )
2423difeq2d 3474 . . . . . . . . . . . . . 14  |-  ( f  =  ( F  |`  x )  ->  ( A  \  ran  f )  =  ( A  \ 
( F " x
) ) )
2524fveq2d 5695 . . . . . . . . . . . . 13  |-  ( f  =  ( F  |`  x )  ->  (
g `  ( A  \  ran  f ) )  =  ( g `  ( A  \  ( F " x ) ) ) )
26 dfac8alem.3 . . . . . . . . . . . . 13  |-  G  =  ( f  e.  _V  |->  ( g `  ( A  \  ran  f ) ) )
27 fvex 5701 . . . . . . . . . . . . 13  |-  ( g `
 ( A  \ 
( F " x
) ) )  e. 
_V
2825, 26, 27fvmpt 5774 . . . . . . . . . . . 12  |-  ( ( F  |`  x )  e.  _V  ->  ( G `  ( F  |`  x
) )  =  ( g `  ( A 
\  ( F "
x ) ) ) )
2920, 28ax-mp 5 . . . . . . . . . . 11  |-  ( G `
 ( F  |`  x ) )  =  ( g `  ( A  \  ( F "
x ) ) )
3014, 29syl6eq 2491 . . . . . . . . . 10  |-  ( x  e.  On  ->  ( F `  x )  =  ( g `  ( A  \  ( F " x ) ) ) )
3130eleq1d 2509 . . . . . . . . 9  |-  ( x  e.  On  ->  (
( F `  x
)  e.  ( A 
\  ( F "
x ) )  <->  ( g `  ( A  \  ( F " x ) ) )  e.  ( A 
\  ( F "
x ) ) ) )
3212, 31syl5ibrcom 222 . . . . . . . 8  |-  ( ( A  e.  _V  /\  A. y  e.  ~P  A
( y  =/=  (/)  ->  (
g `  y )  e.  y )  /\  ( A  \  ( F "
x ) )  =/=  (/) )  ->  ( x  e.  On  ->  ( F `  x )  e.  ( A  \  ( F " x ) ) ) )
33323expia 1189 . . . . . . 7  |-  ( ( A  e.  _V  /\  A. y  e.  ~P  A
( y  =/=  (/)  ->  (
g `  y )  e.  y ) )  -> 
( ( A  \ 
( F " x
) )  =/=  (/)  ->  (
x  e.  On  ->  ( F `  x )  e.  ( A  \ 
( F " x
) ) ) ) )
3433com23 78 . . . . . 6  |-  ( ( A  e.  _V  /\  A. y  e.  ~P  A
( y  =/=  (/)  ->  (
g `  y )  e.  y ) )  -> 
( x  e.  On  ->  ( ( A  \ 
( F " x
) )  =/=  (/)  ->  ( F `  x )  e.  ( A  \  ( F " x ) ) ) ) )
3534ralrimiv 2798 . . . . 5  |-  ( ( A  e.  _V  /\  A. y  e.  ~P  A
( y  =/=  (/)  ->  (
g `  y )  e.  y ) )  ->  A. x  e.  On  ( ( A  \ 
( F " x
) )  =/=  (/)  ->  ( F `  x )  e.  ( A  \  ( F " x ) ) ) )
3635ex 434 . . . 4  |-  ( A  e.  _V  ->  ( A. y  e.  ~P  A ( y  =/=  (/)  ->  ( g `  y )  e.  y )  ->  A. x  e.  On  ( ( A 
\  ( F "
x ) )  =/=  (/)  ->  ( F `  x )  e.  ( A  \  ( F
" x ) ) ) ) )
3715tz7.49c 6901 . . . . . 6  |-  ( ( A  e.  _V  /\  A. x  e.  On  (
( A  \  ( F " x ) )  =/=  (/)  ->  ( F `  x )  e.  ( A  \  ( F
" x ) ) ) )  ->  E. x  e.  On  ( F  |`  x ) : x -1-1-onto-> A )
3837ex 434 . . . . 5  |-  ( A  e.  _V  ->  ( A. x  e.  On  ( ( A  \ 
( F " x
) )  =/=  (/)  ->  ( F `  x )  e.  ( A  \  ( F " x ) ) )  ->  E. x  e.  On  ( F  |`  x ) : x -1-1-onto-> A ) )
3918f1oen 7330 . . . . . . 7  |-  ( ( F  |`  x ) : x -1-1-onto-> A  ->  x  ~~  A )
40 isnumi 8116 . . . . . . 7  |-  ( ( x  e.  On  /\  x  ~~  A )  ->  A  e.  dom  card )
4139, 40sylan2 474 . . . . . 6  |-  ( ( x  e.  On  /\  ( F  |`  x ) : x -1-1-onto-> A )  ->  A  e.  dom  card )
4241rexlimiva 2836 . . . . 5  |-  ( E. x  e.  On  ( F  |`  x ) : x -1-1-onto-> A  ->  A  e.  dom  card )
4338, 42syl6 33 . . . 4  |-  ( A  e.  _V  ->  ( A. x  e.  On  ( ( A  \ 
( F " x
) )  =/=  (/)  ->  ( F `  x )  e.  ( A  \  ( F " x ) ) )  ->  A  e.  dom  card ) )
4436, 43syld 44 . . 3  |-  ( A  e.  _V  ->  ( A. y  e.  ~P  A ( y  =/=  (/)  ->  ( g `  y )  e.  y )  ->  A  e.  dom  card ) )
451, 44syl 16 . 2  |-  ( A  e.  C  ->  ( A. y  e.  ~P  A ( y  =/=  (/)  ->  ( g `  y )  e.  y )  ->  A  e.  dom  card ) )
4645exlimdv 1690 1  |-  ( A  e.  C  ->  ( E. g A. y  e. 
~P  A ( y  =/=  (/)  ->  ( g `  y )  e.  y )  ->  A  e.  dom  card ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1369   E.wex 1586    e. wcel 1756    =/= wne 2606   A.wral 2715   E.wrex 2716   _Vcvv 2972    \ cdif 3325    C_ wss 3328   (/)c0 3637   ~Pcpw 3860   class class class wbr 4292    e. cmpt 4350   Oncon0 4719   dom cdm 4840   ran crn 4841    |` cres 4842   "cima 4843   Fun wfun 5412    Fn wfn 5413   -1-1-onto->wf1o 5417   ` cfv 5418  recscrecs 6831    ~~ cen 7307   cardccrd 8105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4403  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-ral 2720  df-rex 2721  df-reu 2722  df-rab 2724  df-v 2974  df-sbc 3187  df-csb 3289  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-pss 3344  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-tp 3882  df-op 3884  df-uni 4092  df-int 4129  df-iun 4173  df-br 4293  df-opab 4351  df-mpt 4352  df-tr 4386  df-eprel 4632  df-id 4636  df-po 4641  df-so 4642  df-fr 4679  df-we 4681  df-ord 4722  df-on 4723  df-suc 4725  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-res 4852  df-ima 4853  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-f1 5423  df-fo 5424  df-f1o 5425  df-fv 5426  df-recs 6832  df-en 7311  df-card 8109
This theorem is referenced by:  dfac8a  8200
  Copyright terms: Public domain W3C validator