MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfac8a Structured version   Unicode version

Theorem dfac8a 8428
Description: Numeration theorem: every set with a choice function on its power set is numerable. With AC, this reduces to the statement that every set is numerable. Similar to Theorem 10.3 of [TakeutiZaring] p. 84. (Contributed by NM, 10-Feb-1997.) (Revised by Mario Carneiro, 5-Jan-2013.)
Assertion
Ref Expression
dfac8a  |-  ( A  e.  B  ->  ( E. h A. y  e. 
~P  A ( y  =/=  (/)  ->  ( h `  y )  e.  y )  ->  A  e.  dom  card ) )
Distinct variable groups:    y, h, A    B, h
Allowed substitution hint:    B( y)

Proof of Theorem dfac8a
Dummy variables  f 
v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2457 . 2  |- recs ( ( v  e.  _V  |->  ( h `  ( A 
\  ran  v )
) ) )  = recs ( ( v  e. 
_V  |->  ( h `  ( A  \  ran  v
) ) ) )
2 rneq 5238 . . . . 5  |-  ( v  =  f  ->  ran  v  =  ran  f )
32difeq2d 3618 . . . 4  |-  ( v  =  f  ->  ( A  \  ran  v )  =  ( A  \  ran  f ) )
43fveq2d 5876 . . 3  |-  ( v  =  f  ->  (
h `  ( A  \  ran  v ) )  =  ( h `  ( A  \  ran  f
) ) )
54cbvmptv 4548 . 2  |-  ( v  e.  _V  |->  ( h `
 ( A  \  ran  v ) ) )  =  ( f  e. 
_V  |->  ( h `  ( A  \  ran  f
) ) )
61, 5dfac8alem 8427 1  |-  ( A  e.  B  ->  ( E. h A. y  e. 
~P  A ( y  =/=  (/)  ->  ( h `  y )  e.  y )  ->  A  e.  dom  card ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4   E.wex 1613    e. wcel 1819    =/= wne 2652   A.wral 2807   _Vcvv 3109    \ cdif 3468   (/)c0 3793   ~Pcpw 4015    |-> cmpt 4515   dom cdm 5008   ran crn 5009   ` cfv 5594  recscrecs 7059   cardccrd 8333
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-reu 2814  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-int 4289  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-recs 7060  df-en 7536  df-card 8337
This theorem is referenced by:  ween  8433  acnnum  8450  dfac8  8532
  Copyright terms: Public domain W3C validator