MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfac8 Structured version   Unicode version

Theorem dfac8 8300
Description: A proof of the equivalency of the Well Ordering Theorem weth 8660 and the Axiom of Choice ac7 8638. (Contributed by Mario Carneiro, 5-Jan-2013.)
Assertion
Ref Expression
dfac8  |-  (CHOICE  <->  A. x E. r  r  We  x )
Distinct variable group:    x, r

Proof of Theorem dfac8
Dummy variables  f 
y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfac3 8287 . 2  |-  (CHOICE  <->  A. y E. f A. z  e.  y  ( z  =/=  (/)  ->  ( f `  z )  e.  z ) )
2 vex 2973 . . . . . 6  |-  x  e. 
_V
32pwex 4472 . . . . . . 7  |-  ~P x  e.  _V
4 raleq 2915 . . . . . . . 8  |-  ( y  =  ~P x  -> 
( A. z  e.  y  ( z  =/=  (/)  ->  ( f `  z )  e.  z )  <->  A. z  e.  ~P  x ( z  =/=  (/)  ->  ( f `  z )  e.  z ) ) )
54exbidv 1685 . . . . . . 7  |-  ( y  =  ~P x  -> 
( E. f A. z  e.  y  (
z  =/=  (/)  ->  (
f `  z )  e.  z )  <->  E. f A. z  e.  ~P  x ( z  =/=  (/)  ->  ( f `  z )  e.  z ) ) )
63, 5spcv 3060 . . . . . 6  |-  ( A. y E. f A. z  e.  y  ( z  =/=  (/)  ->  ( f `  z )  e.  z )  ->  E. f A. z  e.  ~P  x ( z  =/=  (/)  ->  ( f `  z )  e.  z ) )
7 dfac8a 8196 . . . . . 6  |-  ( x  e.  _V  ->  ( E. f A. z  e. 
~P  x ( z  =/=  (/)  ->  ( f `  z )  e.  z )  ->  x  e.  dom  card ) )
82, 6, 7mpsyl 63 . . . . 5  |-  ( A. y E. f A. z  e.  y  ( z  =/=  (/)  ->  ( f `  z )  e.  z )  ->  x  e.  dom  card )
9 dfac8b 8197 . . . . 5  |-  ( x  e.  dom  card  ->  E. r  r  We  x
)
108, 9syl 16 . . . 4  |-  ( A. y E. f A. z  e.  y  ( z  =/=  (/)  ->  ( f `  z )  e.  z )  ->  E. r 
r  We  x )
1110alrimiv 1690 . . 3  |-  ( A. y E. f A. z  e.  y  ( z  =/=  (/)  ->  ( f `  z )  e.  z )  ->  A. x E. r  r  We  x )
12 vex 2973 . . . . 5  |-  y  e. 
_V
1312uniex 6375 . . . . . 6  |-  U. y  e.  _V
14 weeq2 4705 . . . . . . 7  |-  ( x  =  U. y  -> 
( r  We  x  <->  r  We  U. y ) )
1514exbidv 1685 . . . . . 6  |-  ( x  =  U. y  -> 
( E. r  r  We  x  <->  E. r 
r  We  U. y
) )
1613, 15spcv 3060 . . . . 5  |-  ( A. x E. r  r  We  x  ->  E. r 
r  We  U. y
)
17 dfac8c 8199 . . . . 5  |-  ( y  e.  _V  ->  ( E. r  r  We  U. y  ->  E. f A. z  e.  y 
( z  =/=  (/)  ->  (
f `  z )  e.  z ) ) )
1812, 16, 17mpsyl 63 . . . 4  |-  ( A. x E. r  r  We  x  ->  E. f A. z  e.  y 
( z  =/=  (/)  ->  (
f `  z )  e.  z ) )
1918alrimiv 1690 . . 3  |-  ( A. x E. r  r  We  x  ->  A. y E. f A. z  e.  y  ( z  =/=  (/)  ->  ( f `  z )  e.  z ) )
2011, 19impbii 188 . 2  |-  ( A. y E. f A. z  e.  y  ( z  =/=  (/)  ->  ( f `  z )  e.  z )  <->  A. x E. r 
r  We  x )
211, 20bitri 249 1  |-  (CHOICE  <->  A. x E. r  r  We  x )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184   A.wal 1362    = wceq 1364   E.wex 1591    e. wcel 1761    =/= wne 2604   A.wral 2713   _Vcvv 2970   (/)c0 3634   ~Pcpw 3857   U.cuni 4088    We wwe 4674   dom cdm 4836   ` cfv 5415   cardccrd 8101  CHOICEwac 8281
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-int 4126  df-iun 4170  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-se 4676  df-we 4677  df-ord 4718  df-on 4719  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-isom 5424  df-riota 6049  df-recs 6828  df-en 7307  df-card 8105  df-ac 8282
This theorem is referenced by:  dfac10  8302  weth  8660  dfac11  29340
  Copyright terms: Public domain W3C validator