MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfac5lem2 Structured version   Visualization version   Unicode version

Theorem dfac5lem2 8560
Description: Lemma for dfac5 8564. (Contributed by NM, 12-Apr-2004.)
Hypothesis
Ref Expression
dfac5lem.1  |-  A  =  { u  |  ( u  =/=  (/)  /\  E. t  e.  h  u  =  ( { t }  X.  t ) ) }
Assertion
Ref Expression
dfac5lem2  |-  ( <.
w ,  g >.  e.  U. A  <->  ( w  e.  h  /\  g  e.  w ) )
Distinct variable groups:    w, u, t, h, g    w, A, g
Allowed substitution hints:    A( u, t, h)

Proof of Theorem dfac5lem2
StepHypRef Expression
1 dfac5lem.1 . . . 4  |-  A  =  { u  |  ( u  =/=  (/)  /\  E. t  e.  h  u  =  ( { t }  X.  t ) ) }
21unieqi 4210 . . 3  |-  U. A  =  U. { u  |  ( u  =/=  (/)  /\  E. t  e.  h  u  =  ( { t }  X.  t ) ) }
32eleq2i 2523 . 2  |-  ( <.
w ,  g >.  e.  U. A  <->  <. w ,  g >.  e.  U. {
u  |  ( u  =/=  (/)  /\  E. t  e.  h  u  =  ( { t }  X.  t ) ) } )
4 eluniab 4212 . . 3  |-  ( <.
w ,  g >.  e.  U. { u  |  ( u  =/=  (/)  /\  E. t  e.  h  u  =  ( { t }  X.  t ) ) }  <->  E. u
( <. w ,  g
>.  e.  u  /\  (
u  =/=  (/)  /\  E. t  e.  h  u  =  ( { t }  X.  t ) ) ) )
5 r19.42v 2947 . . . . 5  |-  ( E. t  e.  h  ( ( <. w ,  g
>.  e.  u  /\  u  =/=  (/) )  /\  u  =  ( { t }  X.  t ) )  <->  ( ( <.
w ,  g >.  e.  u  /\  u  =/=  (/) )  /\  E. t  e.  h  u  =  ( { t }  X.  t ) ) )
6 anass 655 . . . . 5  |-  ( ( ( <. w ,  g
>.  e.  u  /\  u  =/=  (/) )  /\  E. t  e.  h  u  =  ( { t }  X.  t ) )  <->  ( <. w ,  g >.  e.  u  /\  ( u  =/=  (/)  /\  E. t  e.  h  u  =  ( { t }  X.  t ) ) ) )
75, 6bitr2i 254 . . . 4  |-  ( (
<. w ,  g >.  e.  u  /\  (
u  =/=  (/)  /\  E. t  e.  h  u  =  ( { t }  X.  t ) ) )  <->  E. t  e.  h  ( ( <. w ,  g >.  e.  u  /\  u  =/=  (/) )  /\  u  =  ( { t }  X.  t ) ) )
87exbii 1720 . . 3  |-  ( E. u ( <. w ,  g >.  e.  u  /\  ( u  =/=  (/)  /\  E. t  e.  h  u  =  ( { t }  X.  t ) ) )  <->  E. u E. t  e.  h  ( ( <. w ,  g >.  e.  u  /\  u  =/=  (/) )  /\  u  =  ( {
t }  X.  t
) ) )
9 rexcom4 3069 . . . 4  |-  ( E. t  e.  h  E. u ( ( <.
w ,  g >.  e.  u  /\  u  =/=  (/) )  /\  u  =  ( { t }  X.  t ) )  <->  E. u E. t  e.  h  ( ( <. w ,  g >.  e.  u  /\  u  =/=  (/) )  /\  u  =  ( { t }  X.  t ) ) )
10 df-rex 2745 . . . 4  |-  ( E. t  e.  h  E. u ( ( <.
w ,  g >.  e.  u  /\  u  =/=  (/) )  /\  u  =  ( { t }  X.  t ) )  <->  E. t ( t  e.  h  /\  E. u ( ( <.
w ,  g >.  e.  u  /\  u  =/=  (/) )  /\  u  =  ( { t }  X.  t ) ) ) )
119, 10bitr3i 255 . . 3  |-  ( E. u E. t  e.  h  ( ( <.
w ,  g >.  e.  u  /\  u  =/=  (/) )  /\  u  =  ( { t }  X.  t ) )  <->  E. t ( t  e.  h  /\  E. u ( ( <.
w ,  g >.  e.  u  /\  u  =/=  (/) )  /\  u  =  ( { t }  X.  t ) ) ) )
124, 8, 113bitri 275 . 2  |-  ( <.
w ,  g >.  e.  U. { u  |  ( u  =/=  (/)  /\  E. t  e.  h  u  =  ( { t }  X.  t ) ) }  <->  E. t
( t  e.  h  /\  E. u ( (
<. w ,  g >.  e.  u  /\  u  =/=  (/) )  /\  u  =  ( { t }  X.  t ) ) ) )
13 ancom 452 . . . . . . . . 9  |-  ( ( ( <. w ,  g
>.  e.  u  /\  u  =/=  (/) )  /\  u  =  ( { t }  X.  t ) )  <->  ( u  =  ( { t }  X.  t )  /\  ( <. w ,  g
>.  e.  u  /\  u  =/=  (/) ) ) )
14 ne0i 3739 . . . . . . . . . . 11  |-  ( <.
w ,  g >.  e.  u  ->  u  =/=  (/) )
1514pm4.71i 638 . . . . . . . . . 10  |-  ( <.
w ,  g >.  e.  u  <->  ( <. w ,  g >.  e.  u  /\  u  =/=  (/) ) )
1615anbi2i 701 . . . . . . . . 9  |-  ( ( u  =  ( { t }  X.  t
)  /\  <. w ,  g >.  e.  u
)  <->  ( u  =  ( { t }  X.  t )  /\  ( <. w ,  g
>.  e.  u  /\  u  =/=  (/) ) ) )
1713, 16bitr4i 256 . . . . . . . 8  |-  ( ( ( <. w ,  g
>.  e.  u  /\  u  =/=  (/) )  /\  u  =  ( { t }  X.  t ) )  <->  ( u  =  ( { t }  X.  t )  /\  <.
w ,  g >.  e.  u ) )
1817exbii 1720 . . . . . . 7  |-  ( E. u ( ( <.
w ,  g >.  e.  u  /\  u  =/=  (/) )  /\  u  =  ( { t }  X.  t ) )  <->  E. u ( u  =  ( { t }  X.  t )  /\  <. w ,  g
>.  e.  u ) )
19 snex 4644 . . . . . . . . 9  |-  { t }  e.  _V
20 vex 3050 . . . . . . . . 9  |-  t  e. 
_V
2119, 20xpex 6600 . . . . . . . 8  |-  ( { t }  X.  t
)  e.  _V
22 eleq2 2520 . . . . . . . 8  |-  ( u  =  ( { t }  X.  t )  ->  ( <. w ,  g >.  e.  u  <->  <.
w ,  g >.  e.  ( { t }  X.  t ) ) )
2321, 22ceqsexv 3086 . . . . . . 7  |-  ( E. u ( u  =  ( { t }  X.  t )  /\  <.
w ,  g >.  e.  u )  <->  <. w ,  g >.  e.  ( { t }  X.  t ) )
2418, 23bitri 253 . . . . . 6  |-  ( E. u ( ( <.
w ,  g >.  e.  u  /\  u  =/=  (/) )  /\  u  =  ( { t }  X.  t ) )  <->  <. w ,  g
>.  e.  ( { t }  X.  t ) )
2524anbi2i 701 . . . . 5  |-  ( ( t  e.  h  /\  E. u ( ( <.
w ,  g >.  e.  u  /\  u  =/=  (/) )  /\  u  =  ( { t }  X.  t ) ) )  <->  ( t  e.  h  /\  <. w ,  g >.  e.  ( { t }  X.  t ) ) )
26 opelxp 4867 . . . . . . 7  |-  ( <.
w ,  g >.  e.  ( { t }  X.  t )  <->  ( w  e.  { t }  /\  g  e.  t )
)
27 elsn 3984 . . . . . . . . 9  |-  ( w  e.  { t }  <-> 
w  =  t )
28 equcom 1864 . . . . . . . . 9  |-  ( w  =  t  <->  t  =  w )
2927, 28bitri 253 . . . . . . . 8  |-  ( w  e.  { t }  <-> 
t  =  w )
3029anbi1i 702 . . . . . . 7  |-  ( ( w  e.  { t }  /\  g  e.  t )  <->  ( t  =  w  /\  g  e.  t ) )
3126, 30bitri 253 . . . . . 6  |-  ( <.
w ,  g >.  e.  ( { t }  X.  t )  <->  ( t  =  w  /\  g  e.  t ) )
3231anbi2i 701 . . . . 5  |-  ( ( t  e.  h  /\  <.
w ,  g >.  e.  ( { t }  X.  t ) )  <-> 
( t  e.  h  /\  ( t  =  w  /\  g  e.  t ) ) )
33 an12 807 . . . . 5  |-  ( ( t  e.  h  /\  ( t  =  w  /\  g  e.  t ) )  <->  ( t  =  w  /\  (
t  e.  h  /\  g  e.  t )
) )
3425, 32, 333bitri 275 . . . 4  |-  ( ( t  e.  h  /\  E. u ( ( <.
w ,  g >.  e.  u  /\  u  =/=  (/) )  /\  u  =  ( { t }  X.  t ) ) )  <->  ( t  =  w  /\  (
t  e.  h  /\  g  e.  t )
) )
3534exbii 1720 . . 3  |-  ( E. t ( t  e.  h  /\  E. u
( ( <. w ,  g >.  e.  u  /\  u  =/=  (/) )  /\  u  =  ( {
t }  X.  t
) ) )  <->  E. t
( t  =  w  /\  ( t  e.  h  /\  g  e.  t ) ) )
36 vex 3050 . . . 4  |-  w  e. 
_V
37 elequ1 1896 . . . . 5  |-  ( t  =  w  ->  (
t  e.  h  <->  w  e.  h ) )
38 eleq2 2520 . . . . 5  |-  ( t  =  w  ->  (
g  e.  t  <->  g  e.  w ) )
3937, 38anbi12d 718 . . . 4  |-  ( t  =  w  ->  (
( t  e.  h  /\  g  e.  t
)  <->  ( w  e.  h  /\  g  e.  w ) ) )
4036, 39ceqsexv 3086 . . 3  |-  ( E. t ( t  =  w  /\  ( t  e.  h  /\  g  e.  t ) )  <->  ( w  e.  h  /\  g  e.  w ) )
4135, 40bitri 253 . 2  |-  ( E. t ( t  e.  h  /\  E. u
( ( <. w ,  g >.  e.  u  /\  u  =/=  (/) )  /\  u  =  ( {
t }  X.  t
) ) )  <->  ( w  e.  h  /\  g  e.  w ) )
423, 12, 413bitri 275 1  |-  ( <.
w ,  g >.  e.  U. A  <->  ( w  e.  h  /\  g  e.  w ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 188    /\ wa 371    = wceq 1446   E.wex 1665    e. wcel 1889   {cab 2439    =/= wne 2624   E.wrex 2740   (/)c0 3733   {csn 3970   <.cop 3976   U.cuni 4201    X. cxp 4835
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1671  ax-4 1684  ax-5 1760  ax-6 1807  ax-7 1853  ax-8 1891  ax-9 1898  ax-10 1917  ax-11 1922  ax-12 1935  ax-13 2093  ax-ext 2433  ax-sep 4528  ax-nul 4537  ax-pow 4584  ax-pr 4642  ax-un 6588
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3an 988  df-tru 1449  df-ex 1666  df-nf 1670  df-sb 1800  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2583  df-ne 2626  df-ral 2744  df-rex 2745  df-rab 2748  df-v 3049  df-dif 3409  df-un 3411  df-in 3413  df-ss 3420  df-nul 3734  df-if 3884  df-pw 3955  df-sn 3971  df-pr 3973  df-op 3977  df-uni 4202  df-opab 4465  df-xp 4843  df-rel 4844
This theorem is referenced by:  dfac5lem5  8563
  Copyright terms: Public domain W3C validator