MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfac4 Structured version   Unicode version

Theorem dfac4 8416
Description: Equivalence of two versions of the Axiom of Choice. The right-hand side is Axiom AC of [BellMachover] p. 488. The proof does not depend on AC. (Contributed by NM, 24-Mar-2004.) (Revised by Mario Carneiro, 26-Jun-2015.)
Assertion
Ref Expression
dfac4  |-  (CHOICE  <->  A. x E. f ( f  Fn  x  /\  A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  z ) ) )
Distinct variable group:    x, f, z

Proof of Theorem dfac4
Dummy variables  y  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfac3 8415 . 2  |-  (CHOICE  <->  A. x E. f A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  z ) )
2 fveq1 5773 . . . . . . . . 9  |-  ( f  =  y  ->  (
f `  z )  =  ( y `  z ) )
32eleq1d 2451 . . . . . . . 8  |-  ( f  =  y  ->  (
( f `  z
)  e.  z  <->  ( y `  z )  e.  z ) )
43imbi2d 314 . . . . . . 7  |-  ( f  =  y  ->  (
( z  =/=  (/)  ->  (
f `  z )  e.  z )  <->  ( z  =/=  (/)  ->  ( y `  z )  e.  z ) ) )
54ralbidv 2821 . . . . . 6  |-  ( f  =  y  ->  ( A. z  e.  x  ( z  =/=  (/)  ->  (
f `  z )  e.  z )  <->  A. z  e.  x  ( z  =/=  (/)  ->  ( y `  z )  e.  z ) ) )
65cbvexv 2031 . . . . 5  |-  ( E. f A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  z )  <->  E. y A. z  e.  x  ( z  =/=  (/)  ->  ( y `  z )  e.  z ) )
7 fvex 5784 . . . . . . . . 9  |-  ( y `
 w )  e. 
_V
8 eqid 2382 . . . . . . . . 9  |-  ( w  e.  x  |->  ( y `
 w ) )  =  ( w  e.  x  |->  ( y `  w ) )
97, 8fnmpti 5617 . . . . . . . 8  |-  ( w  e.  x  |->  ( y `
 w ) )  Fn  x
10 fveq2 5774 . . . . . . . . . . . . 13  |-  ( w  =  z  ->  (
y `  w )  =  ( y `  z ) )
11 fvex 5784 . . . . . . . . . . . . 13  |-  ( y `
 z )  e. 
_V
1210, 8, 11fvmpt 5857 . . . . . . . . . . . 12  |-  ( z  e.  x  ->  (
( w  e.  x  |->  ( y `  w
) ) `  z
)  =  ( y `
 z ) )
1312eleq1d 2451 . . . . . . . . . . 11  |-  ( z  e.  x  ->  (
( ( w  e.  x  |->  ( y `  w ) ) `  z )  e.  z  <-> 
( y `  z
)  e.  z ) )
1413imbi2d 314 . . . . . . . . . 10  |-  ( z  e.  x  ->  (
( z  =/=  (/)  ->  (
( w  e.  x  |->  ( y `  w
) ) `  z
)  e.  z )  <-> 
( z  =/=  (/)  ->  (
y `  z )  e.  z ) ) )
1514ralbiia 2812 . . . . . . . . 9  |-  ( A. z  e.  x  (
z  =/=  (/)  ->  (
( w  e.  x  |->  ( y `  w
) ) `  z
)  e.  z )  <->  A. z  e.  x  ( z  =/=  (/)  ->  (
y `  z )  e.  z ) )
1615anbi2i 692 . . . . . . . 8  |-  ( ( ( w  e.  x  |->  ( y `  w
) )  Fn  x  /\  A. z  e.  x  ( z  =/=  (/)  ->  (
( w  e.  x  |->  ( y `  w
) ) `  z
)  e.  z ) )  <->  ( ( w  e.  x  |->  ( y `
 w ) )  Fn  x  /\  A. z  e.  x  (
z  =/=  (/)  ->  (
y `  z )  e.  z ) ) )
179, 16mpbiran 916 . . . . . . 7  |-  ( ( ( w  e.  x  |->  ( y `  w
) )  Fn  x  /\  A. z  e.  x  ( z  =/=  (/)  ->  (
( w  e.  x  |->  ( y `  w
) ) `  z
)  e.  z ) )  <->  A. z  e.  x  ( z  =/=  (/)  ->  (
y `  z )  e.  z ) )
18 fvrn0 5796 . . . . . . . . . . 11  |-  ( y `
 w )  e.  ( ran  y  u. 
{ (/) } )
1918rgenw 2743 . . . . . . . . . 10  |-  A. w  e.  x  ( y `  w )  e.  ( ran  y  u.  { (/)
} )
208fmpt 5954 . . . . . . . . . 10  |-  ( A. w  e.  x  (
y `  w )  e.  ( ran  y  u. 
{ (/) } )  <->  ( w  e.  x  |->  ( y `
 w ) ) : x --> ( ran  y  u.  { (/) } ) )
2119, 20mpbi 208 . . . . . . . . 9  |-  ( w  e.  x  |->  ( y `
 w ) ) : x --> ( ran  y  u.  { (/) } )
22 vex 3037 . . . . . . . . 9  |-  x  e. 
_V
23 vex 3037 . . . . . . . . . . 11  |-  y  e. 
_V
2423rnex 6633 . . . . . . . . . 10  |-  ran  y  e.  _V
25 p0ex 4552 . . . . . . . . . 10  |-  { (/) }  e.  _V
2624, 25unex 6497 . . . . . . . . 9  |-  ( ran  y  u.  { (/) } )  e.  _V
27 fex2 6654 . . . . . . . . 9  |-  ( ( ( w  e.  x  |->  ( y `  w
) ) : x --> ( ran  y  u. 
{ (/) } )  /\  x  e.  _V  /\  ( ran  y  u.  { (/) } )  e.  _V )  ->  ( w  e.  x  |->  ( y `  w
) )  e.  _V )
2821, 22, 26, 27mp3an 1322 . . . . . . . 8  |-  ( w  e.  x  |->  ( y `
 w ) )  e.  _V
29 fneq1 5577 . . . . . . . . 9  |-  ( f  =  ( w  e.  x  |->  ( y `  w ) )  -> 
( f  Fn  x  <->  ( w  e.  x  |->  ( y `  w ) )  Fn  x ) )
30 fveq1 5773 . . . . . . . . . . . 12  |-  ( f  =  ( w  e.  x  |->  ( y `  w ) )  -> 
( f `  z
)  =  ( ( w  e.  x  |->  ( y `  w ) ) `  z ) )
3130eleq1d 2451 . . . . . . . . . . 11  |-  ( f  =  ( w  e.  x  |->  ( y `  w ) )  -> 
( ( f `  z )  e.  z  <-> 
( ( w  e.  x  |->  ( y `  w ) ) `  z )  e.  z ) )
3231imbi2d 314 . . . . . . . . . 10  |-  ( f  =  ( w  e.  x  |->  ( y `  w ) )  -> 
( ( z  =/=  (/)  ->  ( f `  z )  e.  z )  <->  ( z  =/=  (/)  ->  ( ( w  e.  x  |->  ( y `
 w ) ) `
 z )  e.  z ) ) )
3332ralbidv 2821 . . . . . . . . 9  |-  ( f  =  ( w  e.  x  |->  ( y `  w ) )  -> 
( A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  z )  <->  A. z  e.  x  ( z  =/=  (/)  ->  (
( w  e.  x  |->  ( y `  w
) ) `  z
)  e.  z ) ) )
3429, 33anbi12d 708 . . . . . . . 8  |-  ( f  =  ( w  e.  x  |->  ( y `  w ) )  -> 
( ( f  Fn  x  /\  A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  z ) )  <->  ( (
w  e.  x  |->  ( y `  w ) )  Fn  x  /\  A. z  e.  x  ( z  =/=  (/)  ->  (
( w  e.  x  |->  ( y `  w
) ) `  z
)  e.  z ) ) ) )
3528, 34spcev 3126 . . . . . . 7  |-  ( ( ( w  e.  x  |->  ( y `  w
) )  Fn  x  /\  A. z  e.  x  ( z  =/=  (/)  ->  (
( w  e.  x  |->  ( y `  w
) ) `  z
)  e.  z ) )  ->  E. f
( f  Fn  x  /\  A. z  e.  x  ( z  =/=  (/)  ->  (
f `  z )  e.  z ) ) )
3617, 35sylbir 213 . . . . . 6  |-  ( A. z  e.  x  (
z  =/=  (/)  ->  (
y `  z )  e.  z )  ->  E. f
( f  Fn  x  /\  A. z  e.  x  ( z  =/=  (/)  ->  (
f `  z )  e.  z ) ) )
3736exlimiv 1730 . . . . 5  |-  ( E. y A. z  e.  x  ( z  =/=  (/)  ->  ( y `  z )  e.  z )  ->  E. f
( f  Fn  x  /\  A. z  e.  x  ( z  =/=  (/)  ->  (
f `  z )  e.  z ) ) )
386, 37sylbi 195 . . . 4  |-  ( E. f A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  z )  ->  E. f
( f  Fn  x  /\  A. z  e.  x  ( z  =/=  (/)  ->  (
f `  z )  e.  z ) ) )
39 exsimpr 1686 . . . 4  |-  ( E. f ( f  Fn  x  /\  A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  z ) )  ->  E. f A. z  e.  x  ( z  =/=  (/)  ->  (
f `  z )  e.  z ) )
4038, 39impbii 188 . . 3  |-  ( E. f A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  z )  <->  E. f ( f  Fn  x  /\  A. z  e.  x  (
z  =/=  (/)  ->  (
f `  z )  e.  z ) ) )
4140albii 1648 . 2  |-  ( A. x E. f A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  z )  <->  A. x E. f
( f  Fn  x  /\  A. z  e.  x  ( z  =/=  (/)  ->  (
f `  z )  e.  z ) ) )
421, 41bitri 249 1  |-  (CHOICE  <->  A. x E. f ( f  Fn  x  /\  A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  z ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367   A.wal 1397    = wceq 1399   E.wex 1620    e. wcel 1826    =/= wne 2577   A.wral 2732   _Vcvv 3034    u. cun 3387   (/)c0 3711   {csn 3944    |-> cmpt 4425   ran crn 4914    Fn wfn 5491   -->wf 5492   ` cfv 5496  CHOICEwac 8409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1626  ax-4 1639  ax-5 1712  ax-6 1755  ax-7 1798  ax-8 1828  ax-9 1830  ax-10 1845  ax-11 1850  ax-12 1862  ax-13 2006  ax-ext 2360  ax-sep 4488  ax-nul 4496  ax-pow 4543  ax-pr 4601  ax-un 6491
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 973  df-tru 1402  df-ex 1621  df-nf 1625  df-sb 1748  df-eu 2222  df-mo 2223  df-clab 2368  df-cleq 2374  df-clel 2377  df-nfc 2532  df-ne 2579  df-ral 2737  df-rex 2738  df-rab 2741  df-v 3036  df-sbc 3253  df-dif 3392  df-un 3394  df-in 3396  df-ss 3403  df-nul 3712  df-if 3858  df-pw 3929  df-sn 3945  df-pr 3947  df-op 3951  df-uni 4164  df-br 4368  df-opab 4426  df-mpt 4427  df-id 4709  df-xp 4919  df-rel 4920  df-cnv 4921  df-co 4922  df-dm 4923  df-rn 4924  df-res 4925  df-ima 4926  df-iota 5460  df-fun 5498  df-fn 5499  df-f 5500  df-fv 5504  df-ac 8410
This theorem is referenced by:  dfac5  8422  dfacacn  8434  ac5  8770
  Copyright terms: Public domain W3C validator