MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfac4 Structured version   Unicode version

Theorem dfac4 8506
Description: Equivalence of two versions of the Axiom of Choice. The right-hand side is Axiom AC of [BellMachover] p. 488. The proof does not depend on AC. (Contributed by NM, 24-Mar-2004.) (Revised by Mario Carneiro, 26-Jun-2015.)
Assertion
Ref Expression
dfac4  |-  (CHOICE  <->  A. x E. f ( f  Fn  x  /\  A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  z ) ) )
Distinct variable group:    x, f, z

Proof of Theorem dfac4
Dummy variables  y  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfac3 8505 . 2  |-  (CHOICE  <->  A. x E. f A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  z ) )
2 fveq1 5855 . . . . . . . . 9  |-  ( f  =  y  ->  (
f `  z )  =  ( y `  z ) )
32eleq1d 2512 . . . . . . . 8  |-  ( f  =  y  ->  (
( f `  z
)  e.  z  <->  ( y `  z )  e.  z ) )
43imbi2d 316 . . . . . . 7  |-  ( f  =  y  ->  (
( z  =/=  (/)  ->  (
f `  z )  e.  z )  <->  ( z  =/=  (/)  ->  ( y `  z )  e.  z ) ) )
54ralbidv 2882 . . . . . 6  |-  ( f  =  y  ->  ( A. z  e.  x  ( z  =/=  (/)  ->  (
f `  z )  e.  z )  <->  A. z  e.  x  ( z  =/=  (/)  ->  ( y `  z )  e.  z ) ) )
65cbvexv 2010 . . . . 5  |-  ( E. f A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  z )  <->  E. y A. z  e.  x  ( z  =/=  (/)  ->  ( y `  z )  e.  z ) )
7 fvex 5866 . . . . . . . . 9  |-  ( y `
 w )  e. 
_V
8 eqid 2443 . . . . . . . . 9  |-  ( w  e.  x  |->  ( y `
 w ) )  =  ( w  e.  x  |->  ( y `  w ) )
97, 8fnmpti 5699 . . . . . . . 8  |-  ( w  e.  x  |->  ( y `
 w ) )  Fn  x
10 fveq2 5856 . . . . . . . . . . . . 13  |-  ( w  =  z  ->  (
y `  w )  =  ( y `  z ) )
11 fvex 5866 . . . . . . . . . . . . 13  |-  ( y `
 z )  e. 
_V
1210, 8, 11fvmpt 5941 . . . . . . . . . . . 12  |-  ( z  e.  x  ->  (
( w  e.  x  |->  ( y `  w
) ) `  z
)  =  ( y `
 z ) )
1312eleq1d 2512 . . . . . . . . . . 11  |-  ( z  e.  x  ->  (
( ( w  e.  x  |->  ( y `  w ) ) `  z )  e.  z  <-> 
( y `  z
)  e.  z ) )
1413imbi2d 316 . . . . . . . . . 10  |-  ( z  e.  x  ->  (
( z  =/=  (/)  ->  (
( w  e.  x  |->  ( y `  w
) ) `  z
)  e.  z )  <-> 
( z  =/=  (/)  ->  (
y `  z )  e.  z ) ) )
1514ralbiia 2873 . . . . . . . . 9  |-  ( A. z  e.  x  (
z  =/=  (/)  ->  (
( w  e.  x  |->  ( y `  w
) ) `  z
)  e.  z )  <->  A. z  e.  x  ( z  =/=  (/)  ->  (
y `  z )  e.  z ) )
1615anbi2i 694 . . . . . . . 8  |-  ( ( ( w  e.  x  |->  ( y `  w
) )  Fn  x  /\  A. z  e.  x  ( z  =/=  (/)  ->  (
( w  e.  x  |->  ( y `  w
) ) `  z
)  e.  z ) )  <->  ( ( w  e.  x  |->  ( y `
 w ) )  Fn  x  /\  A. z  e.  x  (
z  =/=  (/)  ->  (
y `  z )  e.  z ) ) )
179, 16mpbiran 918 . . . . . . 7  |-  ( ( ( w  e.  x  |->  ( y `  w
) )  Fn  x  /\  A. z  e.  x  ( z  =/=  (/)  ->  (
( w  e.  x  |->  ( y `  w
) ) `  z
)  e.  z ) )  <->  A. z  e.  x  ( z  =/=  (/)  ->  (
y `  z )  e.  z ) )
18 fvrn0 5878 . . . . . . . . . . 11  |-  ( y `
 w )  e.  ( ran  y  u. 
{ (/) } )
1918rgenw 2804 . . . . . . . . . 10  |-  A. w  e.  x  ( y `  w )  e.  ( ran  y  u.  { (/)
} )
208fmpt 6037 . . . . . . . . . 10  |-  ( A. w  e.  x  (
y `  w )  e.  ( ran  y  u. 
{ (/) } )  <->  ( w  e.  x  |->  ( y `
 w ) ) : x --> ( ran  y  u.  { (/) } ) )
2119, 20mpbi 208 . . . . . . . . 9  |-  ( w  e.  x  |->  ( y `
 w ) ) : x --> ( ran  y  u.  { (/) } )
22 vex 3098 . . . . . . . . 9  |-  x  e. 
_V
23 vex 3098 . . . . . . . . . . 11  |-  y  e. 
_V
2423rnex 6719 . . . . . . . . . 10  |-  ran  y  e.  _V
25 p0ex 4624 . . . . . . . . . 10  |-  { (/) }  e.  _V
2624, 25unex 6583 . . . . . . . . 9  |-  ( ran  y  u.  { (/) } )  e.  _V
27 fex2 6740 . . . . . . . . 9  |-  ( ( ( w  e.  x  |->  ( y `  w
) ) : x --> ( ran  y  u. 
{ (/) } )  /\  x  e.  _V  /\  ( ran  y  u.  { (/) } )  e.  _V )  ->  ( w  e.  x  |->  ( y `  w
) )  e.  _V )
2821, 22, 26, 27mp3an 1325 . . . . . . . 8  |-  ( w  e.  x  |->  ( y `
 w ) )  e.  _V
29 fneq1 5659 . . . . . . . . 9  |-  ( f  =  ( w  e.  x  |->  ( y `  w ) )  -> 
( f  Fn  x  <->  ( w  e.  x  |->  ( y `  w ) )  Fn  x ) )
30 fveq1 5855 . . . . . . . . . . . 12  |-  ( f  =  ( w  e.  x  |->  ( y `  w ) )  -> 
( f `  z
)  =  ( ( w  e.  x  |->  ( y `  w ) ) `  z ) )
3130eleq1d 2512 . . . . . . . . . . 11  |-  ( f  =  ( w  e.  x  |->  ( y `  w ) )  -> 
( ( f `  z )  e.  z  <-> 
( ( w  e.  x  |->  ( y `  w ) ) `  z )  e.  z ) )
3231imbi2d 316 . . . . . . . . . 10  |-  ( f  =  ( w  e.  x  |->  ( y `  w ) )  -> 
( ( z  =/=  (/)  ->  ( f `  z )  e.  z )  <->  ( z  =/=  (/)  ->  ( ( w  e.  x  |->  ( y `
 w ) ) `
 z )  e.  z ) ) )
3332ralbidv 2882 . . . . . . . . 9  |-  ( f  =  ( w  e.  x  |->  ( y `  w ) )  -> 
( A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  z )  <->  A. z  e.  x  ( z  =/=  (/)  ->  (
( w  e.  x  |->  ( y `  w
) ) `  z
)  e.  z ) ) )
3429, 33anbi12d 710 . . . . . . . 8  |-  ( f  =  ( w  e.  x  |->  ( y `  w ) )  -> 
( ( f  Fn  x  /\  A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  z ) )  <->  ( (
w  e.  x  |->  ( y `  w ) )  Fn  x  /\  A. z  e.  x  ( z  =/=  (/)  ->  (
( w  e.  x  |->  ( y `  w
) ) `  z
)  e.  z ) ) ) )
3528, 34spcev 3187 . . . . . . 7  |-  ( ( ( w  e.  x  |->  ( y `  w
) )  Fn  x  /\  A. z  e.  x  ( z  =/=  (/)  ->  (
( w  e.  x  |->  ( y `  w
) ) `  z
)  e.  z ) )  ->  E. f
( f  Fn  x  /\  A. z  e.  x  ( z  =/=  (/)  ->  (
f `  z )  e.  z ) ) )
3617, 35sylbir 213 . . . . . 6  |-  ( A. z  e.  x  (
z  =/=  (/)  ->  (
y `  z )  e.  z )  ->  E. f
( f  Fn  x  /\  A. z  e.  x  ( z  =/=  (/)  ->  (
f `  z )  e.  z ) ) )
3736exlimiv 1709 . . . . 5  |-  ( E. y A. z  e.  x  ( z  =/=  (/)  ->  ( y `  z )  e.  z )  ->  E. f
( f  Fn  x  /\  A. z  e.  x  ( z  =/=  (/)  ->  (
f `  z )  e.  z ) ) )
386, 37sylbi 195 . . . 4  |-  ( E. f A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  z )  ->  E. f
( f  Fn  x  /\  A. z  e.  x  ( z  =/=  (/)  ->  (
f `  z )  e.  z ) ) )
39 exsimpr 1665 . . . 4  |-  ( E. f ( f  Fn  x  /\  A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  z ) )  ->  E. f A. z  e.  x  ( z  =/=  (/)  ->  (
f `  z )  e.  z ) )
4038, 39impbii 188 . . 3  |-  ( E. f A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  z )  <->  E. f ( f  Fn  x  /\  A. z  e.  x  (
z  =/=  (/)  ->  (
f `  z )  e.  z ) ) )
4140albii 1627 . 2  |-  ( A. x E. f A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  z )  <->  A. x E. f
( f  Fn  x  /\  A. z  e.  x  ( z  =/=  (/)  ->  (
f `  z )  e.  z ) ) )
421, 41bitri 249 1  |-  (CHOICE  <->  A. x E. f ( f  Fn  x  /\  A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  z ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369   A.wal 1381    = wceq 1383   E.wex 1599    e. wcel 1804    =/= wne 2638   A.wral 2793   _Vcvv 3095    u. cun 3459   (/)c0 3770   {csn 4014    |-> cmpt 4495   ran crn 4990    Fn wfn 5573   -->wf 5574   ` cfv 5578  CHOICEwac 8499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-ral 2798  df-rex 2799  df-rab 2802  df-v 3097  df-sbc 3314  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-op 4021  df-uni 4235  df-br 4438  df-opab 4496  df-mpt 4497  df-id 4785  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-fv 5586  df-ac 8500
This theorem is referenced by:  dfac5  8512  dfacacn  8524  ac5  8860
  Copyright terms: Public domain W3C validator