MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfac4 Unicode version

Theorem dfac4 7959
Description: Equivalence of two versions of the Axiom of Choice. The right-hand side is Axiom AC of [BellMachover] p. 488. The proof does not depend on AC. (Contributed by NM, 24-Mar-2004.) (Revised by Mario Carneiro, 26-Jun-2015.)
Assertion
Ref Expression
dfac4  |-  (CHOICE  <->  A. x E. f ( f  Fn  x  /\  A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  z ) ) )
Distinct variable group:    x, f, z

Proof of Theorem dfac4
Dummy variables  y  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfac3 7958 . 2  |-  (CHOICE  <->  A. x E. f A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  z ) )
2 fveq1 5686 . . . . . . . . 9  |-  ( f  =  y  ->  (
f `  z )  =  ( y `  z ) )
32eleq1d 2470 . . . . . . . 8  |-  ( f  =  y  ->  (
( f `  z
)  e.  z  <->  ( y `  z )  e.  z ) )
43imbi2d 308 . . . . . . 7  |-  ( f  =  y  ->  (
( z  =/=  (/)  ->  (
f `  z )  e.  z )  <->  ( z  =/=  (/)  ->  ( y `  z )  e.  z ) ) )
54ralbidv 2686 . . . . . 6  |-  ( f  =  y  ->  ( A. z  e.  x  ( z  =/=  (/)  ->  (
f `  z )  e.  z )  <->  A. z  e.  x  ( z  =/=  (/)  ->  ( y `  z )  e.  z ) ) )
65cbvexv 2053 . . . . 5  |-  ( E. f A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  z )  <->  E. y A. z  e.  x  ( z  =/=  (/)  ->  ( y `  z )  e.  z ) )
7 fvex 5701 . . . . . . . . 9  |-  ( y `
 w )  e. 
_V
8 eqid 2404 . . . . . . . . 9  |-  ( w  e.  x  |->  ( y `
 w ) )  =  ( w  e.  x  |->  ( y `  w ) )
97, 8fnmpti 5532 . . . . . . . 8  |-  ( w  e.  x  |->  ( y `
 w ) )  Fn  x
10 fveq2 5687 . . . . . . . . . . . . 13  |-  ( w  =  z  ->  (
y `  w )  =  ( y `  z ) )
11 fvex 5701 . . . . . . . . . . . . 13  |-  ( y `
 z )  e. 
_V
1210, 8, 11fvmpt 5765 . . . . . . . . . . . 12  |-  ( z  e.  x  ->  (
( w  e.  x  |->  ( y `  w
) ) `  z
)  =  ( y `
 z ) )
1312eleq1d 2470 . . . . . . . . . . 11  |-  ( z  e.  x  ->  (
( ( w  e.  x  |->  ( y `  w ) ) `  z )  e.  z  <-> 
( y `  z
)  e.  z ) )
1413imbi2d 308 . . . . . . . . . 10  |-  ( z  e.  x  ->  (
( z  =/=  (/)  ->  (
( w  e.  x  |->  ( y `  w
) ) `  z
)  e.  z )  <-> 
( z  =/=  (/)  ->  (
y `  z )  e.  z ) ) )
1514ralbiia 2698 . . . . . . . . 9  |-  ( A. z  e.  x  (
z  =/=  (/)  ->  (
( w  e.  x  |->  ( y `  w
) ) `  z
)  e.  z )  <->  A. z  e.  x  ( z  =/=  (/)  ->  (
y `  z )  e.  z ) )
1615anbi2i 676 . . . . . . . 8  |-  ( ( ( w  e.  x  |->  ( y `  w
) )  Fn  x  /\  A. z  e.  x  ( z  =/=  (/)  ->  (
( w  e.  x  |->  ( y `  w
) ) `  z
)  e.  z ) )  <->  ( ( w  e.  x  |->  ( y `
 w ) )  Fn  x  /\  A. z  e.  x  (
z  =/=  (/)  ->  (
y `  z )  e.  z ) ) )
179, 16mpbiran 885 . . . . . . 7  |-  ( ( ( w  e.  x  |->  ( y `  w
) )  Fn  x  /\  A. z  e.  x  ( z  =/=  (/)  ->  (
( w  e.  x  |->  ( y `  w
) ) `  z
)  e.  z ) )  <->  A. z  e.  x  ( z  =/=  (/)  ->  (
y `  z )  e.  z ) )
18 fvrn0 5712 . . . . . . . . . . 11  |-  ( y `
 w )  e.  ( ran  y  u. 
{ (/) } )
1918rgenw 2733 . . . . . . . . . 10  |-  A. w  e.  x  ( y `  w )  e.  ( ran  y  u.  { (/)
} )
208fmpt 5849 . . . . . . . . . 10  |-  ( A. w  e.  x  (
y `  w )  e.  ( ran  y  u. 
{ (/) } )  <->  ( w  e.  x  |->  ( y `
 w ) ) : x --> ( ran  y  u.  { (/) } ) )
2119, 20mpbi 200 . . . . . . . . 9  |-  ( w  e.  x  |->  ( y `
 w ) ) : x --> ( ran  y  u.  { (/) } )
22 vex 2919 . . . . . . . . 9  |-  x  e. 
_V
23 vex 2919 . . . . . . . . . . 11  |-  y  e. 
_V
2423rnex 5092 . . . . . . . . . 10  |-  ran  y  e.  _V
25 p0ex 4346 . . . . . . . . . 10  |-  { (/) }  e.  _V
2624, 25unex 4666 . . . . . . . . 9  |-  ( ran  y  u.  { (/) } )  e.  _V
27 fex2 5562 . . . . . . . . 9  |-  ( ( ( w  e.  x  |->  ( y `  w
) ) : x --> ( ran  y  u. 
{ (/) } )  /\  x  e.  _V  /\  ( ran  y  u.  { (/) } )  e.  _V )  ->  ( w  e.  x  |->  ( y `  w
) )  e.  _V )
2821, 22, 26, 27mp3an 1279 . . . . . . . 8  |-  ( w  e.  x  |->  ( y `
 w ) )  e.  _V
29 fneq1 5493 . . . . . . . . 9  |-  ( f  =  ( w  e.  x  |->  ( y `  w ) )  -> 
( f  Fn  x  <->  ( w  e.  x  |->  ( y `  w ) )  Fn  x ) )
30 fveq1 5686 . . . . . . . . . . . 12  |-  ( f  =  ( w  e.  x  |->  ( y `  w ) )  -> 
( f `  z
)  =  ( ( w  e.  x  |->  ( y `  w ) ) `  z ) )
3130eleq1d 2470 . . . . . . . . . . 11  |-  ( f  =  ( w  e.  x  |->  ( y `  w ) )  -> 
( ( f `  z )  e.  z  <-> 
( ( w  e.  x  |->  ( y `  w ) ) `  z )  e.  z ) )
3231imbi2d 308 . . . . . . . . . 10  |-  ( f  =  ( w  e.  x  |->  ( y `  w ) )  -> 
( ( z  =/=  (/)  ->  ( f `  z )  e.  z )  <->  ( z  =/=  (/)  ->  ( ( w  e.  x  |->  ( y `
 w ) ) `
 z )  e.  z ) ) )
3332ralbidv 2686 . . . . . . . . 9  |-  ( f  =  ( w  e.  x  |->  ( y `  w ) )  -> 
( A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  z )  <->  A. z  e.  x  ( z  =/=  (/)  ->  (
( w  e.  x  |->  ( y `  w
) ) `  z
)  e.  z ) ) )
3429, 33anbi12d 692 . . . . . . . 8  |-  ( f  =  ( w  e.  x  |->  ( y `  w ) )  -> 
( ( f  Fn  x  /\  A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  z ) )  <->  ( (
w  e.  x  |->  ( y `  w ) )  Fn  x  /\  A. z  e.  x  ( z  =/=  (/)  ->  (
( w  e.  x  |->  ( y `  w
) ) `  z
)  e.  z ) ) ) )
3528, 34spcev 3003 . . . . . . 7  |-  ( ( ( w  e.  x  |->  ( y `  w
) )  Fn  x  /\  A. z  e.  x  ( z  =/=  (/)  ->  (
( w  e.  x  |->  ( y `  w
) ) `  z
)  e.  z ) )  ->  E. f
( f  Fn  x  /\  A. z  e.  x  ( z  =/=  (/)  ->  (
f `  z )  e.  z ) ) )
3617, 35sylbir 205 . . . . . 6  |-  ( A. z  e.  x  (
z  =/=  (/)  ->  (
y `  z )  e.  z )  ->  E. f
( f  Fn  x  /\  A. z  e.  x  ( z  =/=  (/)  ->  (
f `  z )  e.  z ) ) )
3736exlimiv 1641 . . . . 5  |-  ( E. y A. z  e.  x  ( z  =/=  (/)  ->  ( y `  z )  e.  z )  ->  E. f
( f  Fn  x  /\  A. z  e.  x  ( z  =/=  (/)  ->  (
f `  z )  e.  z ) ) )
386, 37sylbi 188 . . . 4  |-  ( E. f A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  z )  ->  E. f
( f  Fn  x  /\  A. z  e.  x  ( z  =/=  (/)  ->  (
f `  z )  e.  z ) ) )
39 simpr 448 . . . . 5  |-  ( ( f  Fn  x  /\  A. z  e.  x  ( z  =/=  (/)  ->  (
f `  z )  e.  z ) )  ->  A. z  e.  x  ( z  =/=  (/)  ->  (
f `  z )  e.  z ) )
4039eximi 1582 . . . 4  |-  ( E. f ( f  Fn  x  /\  A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  z ) )  ->  E. f A. z  e.  x  ( z  =/=  (/)  ->  (
f `  z )  e.  z ) )
4138, 40impbii 181 . . 3  |-  ( E. f A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  z )  <->  E. f ( f  Fn  x  /\  A. z  e.  x  (
z  =/=  (/)  ->  (
f `  z )  e.  z ) ) )
4241albii 1572 . 2  |-  ( A. x E. f A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  z )  <->  A. x E. f
( f  Fn  x  /\  A. z  e.  x  ( z  =/=  (/)  ->  (
f `  z )  e.  z ) ) )
431, 42bitri 241 1  |-  (CHOICE  <->  A. x E. f ( f  Fn  x  /\  A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  z ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359   A.wal 1546   E.wex 1547    = wceq 1649    e. wcel 1721    =/= wne 2567   A.wral 2666   _Vcvv 2916    u. cun 3278   (/)c0 3588   {csn 3774    e. cmpt 4226   ran crn 4838    Fn wfn 5408   -->wf 5409   ` cfv 5413  CHOICEwac 7952
This theorem is referenced by:  dfac5  7965  dfacacn  7977  ac5  8313
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-rab 2675  df-v 2918  df-sbc 3122  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-br 4173  df-opab 4227  df-mpt 4228  df-id 4458  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-fv 5421  df-ac 7953
  Copyright terms: Public domain W3C validator