MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfac2a Structured version   Visualization version   Unicode version

Theorem dfac2a 8585
Description: Our Axiom of Choice (in the form of ac3 8917) implies the Axiom of Choice (first form) of [Enderton] p. 49. The proof uses neither AC nor the Axiom of Regularity. See dfac2 8586 for the converse (which does use the Axiom of Regularity). (Contributed by NM, 5-Apr-2004.) (Revised by Mario Carneiro, 26-Jun-2015.)
Assertion
Ref Expression
dfac2a  |-  ( A. x E. y A. z  e.  x  ( z  =/=  (/)  ->  E! w  e.  z  E. v  e.  y  ( z  e.  v  /\  w  e.  v ) )  -> CHOICE )
Distinct variable group:    x, z, y, w, v

Proof of Theorem dfac2a
Dummy variables  f  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 riotauni 6282 . . . . . . . . 9  |-  ( E! w  e.  z  E. v  e.  y  (
z  e.  v  /\  w  e.  v )  ->  ( iota_ w  e.  z  E. v  e.  y  ( z  e.  v  /\  w  e.  v ) )  =  U. { w  e.  z  |  E. v  e.  y  ( z  e.  v  /\  w  e.  v ) } )
2 riotacl 6290 . . . . . . . . 9  |-  ( E! w  e.  z  E. v  e.  y  (
z  e.  v  /\  w  e.  v )  ->  ( iota_ w  e.  z  E. v  e.  y  ( z  e.  v  /\  w  e.  v ) )  e.  z )
31, 2eqeltrrd 2540 . . . . . . . 8  |-  ( E! w  e.  z  E. v  e.  y  (
z  e.  v  /\  w  e.  v )  ->  U. { w  e.  z  |  E. v  e.  y  ( z  e.  v  /\  w  e.  v ) }  e.  z )
4 elequ2 1911 . . . . . . . . . . . . 13  |-  ( u  =  z  ->  (
w  e.  u  <->  w  e.  z ) )
5 elequ1 1904 . . . . . . . . . . . . . . 15  |-  ( u  =  z  ->  (
u  e.  v  <->  z  e.  v ) )
65anbi1d 716 . . . . . . . . . . . . . 14  |-  ( u  =  z  ->  (
( u  e.  v  /\  w  e.  v )  <->  ( z  e.  v  /\  w  e.  v ) ) )
76rexbidv 2912 . . . . . . . . . . . . 13  |-  ( u  =  z  ->  ( E. v  e.  y 
( u  e.  v  /\  w  e.  v )  <->  E. v  e.  y  ( z  e.  v  /\  w  e.  v ) ) )
84, 7anbi12d 722 . . . . . . . . . . . 12  |-  ( u  =  z  ->  (
( w  e.  u  /\  E. v  e.  y  ( u  e.  v  /\  w  e.  v ) )  <->  ( w  e.  z  /\  E. v  e.  y  ( z  e.  v  /\  w  e.  v ) ) ) )
98rabbidva2 3045 . . . . . . . . . . 11  |-  ( u  =  z  ->  { w  e.  u  |  E. v  e.  y  (
u  e.  v  /\  w  e.  v ) }  =  { w  e.  z  |  E. v  e.  y  (
z  e.  v  /\  w  e.  v ) } )
109unieqd 4221 . . . . . . . . . 10  |-  ( u  =  z  ->  U. {
w  e.  u  |  E. v  e.  y  ( u  e.  v  /\  w  e.  v ) }  =  U. { w  e.  z  |  E. v  e.  y  ( z  e.  v  /\  w  e.  v ) } )
11 eqid 2461 . . . . . . . . . 10  |-  ( u  e.  x  |->  U. {
w  e.  u  |  E. v  e.  y  ( u  e.  v  /\  w  e.  v ) } )  =  ( u  e.  x  |-> 
U. { w  e.  u  |  E. v  e.  y  ( u  e.  v  /\  w  e.  v ) } )
12 vex 3059 . . . . . . . . . . . 12  |-  z  e. 
_V
1312rabex 4567 . . . . . . . . . . 11  |-  { w  e.  z  |  E. v  e.  y  (
z  e.  v  /\  w  e.  v ) }  e.  _V
1413uniex 6613 . . . . . . . . . 10  |-  U. {
w  e.  z  |  E. v  e.  y  ( z  e.  v  /\  w  e.  v ) }  e.  _V
1510, 11, 14fvmpt 5970 . . . . . . . . 9  |-  ( z  e.  x  ->  (
( u  e.  x  |-> 
U. { w  e.  u  |  E. v  e.  y  ( u  e.  v  /\  w  e.  v ) } ) `
 z )  = 
U. { w  e.  z  |  E. v  e.  y  ( z  e.  v  /\  w  e.  v ) } )
1615eleq1d 2523 . . . . . . . 8  |-  ( z  e.  x  ->  (
( ( u  e.  x  |->  U. { w  e.  u  |  E. v  e.  y  ( u  e.  v  /\  w  e.  v ) } ) `
 z )  e.  z  <->  U. { w  e.  z  |  E. v  e.  y  ( z  e.  v  /\  w  e.  v ) }  e.  z ) )
173, 16syl5ibr 229 . . . . . . 7  |-  ( z  e.  x  ->  ( E! w  e.  z  E. v  e.  y 
( z  e.  v  /\  w  e.  v )  ->  ( (
u  e.  x  |->  U. { w  e.  u  |  E. v  e.  y  ( u  e.  v  /\  w  e.  v ) } ) `  z )  e.  z ) )
1817imim2d 54 . . . . . 6  |-  ( z  e.  x  ->  (
( z  =/=  (/)  ->  E! w  e.  z  E. v  e.  y  (
z  e.  v  /\  w  e.  v )
)  ->  ( z  =/=  (/)  ->  ( (
u  e.  x  |->  U. { w  e.  u  |  E. v  e.  y  ( u  e.  v  /\  w  e.  v ) } ) `  z )  e.  z ) ) )
1918ralimia 2790 . . . . 5  |-  ( A. z  e.  x  (
z  =/=  (/)  ->  E! w  e.  z  E. v  e.  y  (
z  e.  v  /\  w  e.  v )
)  ->  A. z  e.  x  ( z  =/=  (/)  ->  ( (
u  e.  x  |->  U. { w  e.  u  |  E. v  e.  y  ( u  e.  v  /\  w  e.  v ) } ) `  z )  e.  z ) )
20 ssrab2 3525 . . . . . . . . . . 11  |-  { w  e.  u  |  E. v  e.  y  (
u  e.  v  /\  w  e.  v ) }  C_  u
21 elssuni 4240 . . . . . . . . . . 11  |-  ( u  e.  x  ->  u  C_ 
U. x )
2220, 21syl5ss 3454 . . . . . . . . . 10  |-  ( u  e.  x  ->  { w  e.  u  |  E. v  e.  y  (
u  e.  v  /\  w  e.  v ) }  C_  U. x )
2322unissd 4235 . . . . . . . . 9  |-  ( u  e.  x  ->  U. {
w  e.  u  |  E. v  e.  y  ( u  e.  v  /\  w  e.  v ) }  C_  U. U. x )
24 vex 3059 . . . . . . . . . . . 12  |-  x  e. 
_V
2524uniex 6613 . . . . . . . . . . 11  |-  U. x  e.  _V
2625uniex 6613 . . . . . . . . . 10  |-  U. U. x  e.  _V
2726elpw2 4580 . . . . . . . . 9  |-  ( U. { w  e.  u  |  E. v  e.  y  ( u  e.  v  /\  w  e.  v ) }  e.  ~P U.
U. x  <->  U. { w  e.  u  |  E. v  e.  y  (
u  e.  v  /\  w  e.  v ) }  C_  U. U. x
)
2823, 27sylibr 217 . . . . . . . 8  |-  ( u  e.  x  ->  U. {
w  e.  u  |  E. v  e.  y  ( u  e.  v  /\  w  e.  v ) }  e.  ~P U.
U. x )
2911, 28fmpti 6067 . . . . . . 7  |-  ( u  e.  x  |->  U. {
w  e.  u  |  E. v  e.  y  ( u  e.  v  /\  w  e.  v ) } ) : x --> ~P U. U. x
3026pwex 4599 . . . . . . 7  |-  ~P U. U. x  e.  _V
31 fex2 6774 . . . . . . 7  |-  ( ( ( u  e.  x  |-> 
U. { w  e.  u  |  E. v  e.  y  ( u  e.  v  /\  w  e.  v ) } ) : x --> ~P U. U. x  /\  x  e. 
_V  /\  ~P U. U. x  e.  _V )  ->  ( u  e.  x  |-> 
U. { w  e.  u  |  E. v  e.  y  ( u  e.  v  /\  w  e.  v ) } )  e.  _V )
3229, 24, 30, 31mp3an 1373 . . . . . 6  |-  ( u  e.  x  |->  U. {
w  e.  u  |  E. v  e.  y  ( u  e.  v  /\  w  e.  v ) } )  e. 
_V
33 fveq1 5886 . . . . . . . . 9  |-  ( f  =  ( u  e.  x  |->  U. { w  e.  u  |  E. v  e.  y  ( u  e.  v  /\  w  e.  v ) } )  ->  ( f `  z )  =  ( ( u  e.  x  |-> 
U. { w  e.  u  |  E. v  e.  y  ( u  e.  v  /\  w  e.  v ) } ) `
 z ) )
3433eleq1d 2523 . . . . . . . 8  |-  ( f  =  ( u  e.  x  |->  U. { w  e.  u  |  E. v  e.  y  ( u  e.  v  /\  w  e.  v ) } )  ->  ( ( f `
 z )  e.  z  <->  ( ( u  e.  x  |->  U. {
w  e.  u  |  E. v  e.  y  ( u  e.  v  /\  w  e.  v ) } ) `  z )  e.  z ) )
3534imbi2d 322 . . . . . . 7  |-  ( f  =  ( u  e.  x  |->  U. { w  e.  u  |  E. v  e.  y  ( u  e.  v  /\  w  e.  v ) } )  ->  ( ( z  =/=  (/)  ->  ( f `  z )  e.  z )  <->  ( z  =/=  (/)  ->  ( ( u  e.  x  |->  U. {
w  e.  u  |  E. v  e.  y  ( u  e.  v  /\  w  e.  v ) } ) `  z )  e.  z ) ) )
3635ralbidv 2838 . . . . . 6  |-  ( f  =  ( u  e.  x  |->  U. { w  e.  u  |  E. v  e.  y  ( u  e.  v  /\  w  e.  v ) } )  ->  ( A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  z )  <->  A. z  e.  x  ( z  =/=  (/)  ->  (
( u  e.  x  |-> 
U. { w  e.  u  |  E. v  e.  y  ( u  e.  v  /\  w  e.  v ) } ) `
 z )  e.  z ) ) )
3732, 36spcev 3152 . . . . 5  |-  ( A. z  e.  x  (
z  =/=  (/)  ->  (
( u  e.  x  |-> 
U. { w  e.  u  |  E. v  e.  y  ( u  e.  v  /\  w  e.  v ) } ) `
 z )  e.  z )  ->  E. f A. z  e.  x  ( z  =/=  (/)  ->  (
f `  z )  e.  z ) )
3819, 37syl 17 . . . 4  |-  ( A. z  e.  x  (
z  =/=  (/)  ->  E! w  e.  z  E. v  e.  y  (
z  e.  v  /\  w  e.  v )
)  ->  E. f A. z  e.  x  ( z  =/=  (/)  ->  (
f `  z )  e.  z ) )
3938exlimiv 1786 . . 3  |-  ( E. y A. z  e.  x  ( z  =/=  (/)  ->  E! w  e.  z  E. v  e.  y  ( z  e.  v  /\  w  e.  v ) )  ->  E. f A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  z ) )
4039alimi 1694 . 2  |-  ( A. x E. y A. z  e.  x  ( z  =/=  (/)  ->  E! w  e.  z  E. v  e.  y  ( z  e.  v  /\  w  e.  v ) )  ->  A. x E. f A. z  e.  x  (
z  =/=  (/)  ->  (
f `  z )  e.  z ) )
41 dfac3 8577 . 2  |-  (CHOICE  <->  A. x E. f A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  z ) )
4240, 41sylibr 217 1  |-  ( A. x E. y A. z  e.  x  ( z  =/=  (/)  ->  E! w  e.  z  E. v  e.  y  ( z  e.  v  /\  w  e.  v ) )  -> CHOICE )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 375   A.wal 1452    = wceq 1454   E.wex 1673    e. wcel 1897    =/= wne 2632   A.wral 2748   E.wrex 2749   E!wreu 2750   {crab 2752   _Vcvv 3056    C_ wss 3415   (/)c0 3742   ~Pcpw 3962   U.cuni 4211    |-> cmpt 4474   -->wf 5596   ` cfv 5600   iota_crio 6275  CHOICEwac 8571
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1679  ax-4 1692  ax-5 1768  ax-6 1815  ax-7 1861  ax-8 1899  ax-9 1906  ax-10 1925  ax-11 1930  ax-12 1943  ax-13 2101  ax-ext 2441  ax-sep 4538  ax-nul 4547  ax-pow 4594  ax-pr 4652  ax-un 6609
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-3an 993  df-tru 1457  df-ex 1674  df-nf 1678  df-sb 1808  df-eu 2313  df-mo 2314  df-clab 2448  df-cleq 2454  df-clel 2457  df-nfc 2591  df-ne 2634  df-ral 2753  df-rex 2754  df-reu 2755  df-rab 2757  df-v 3058  df-sbc 3279  df-dif 3418  df-un 3420  df-in 3422  df-ss 3429  df-nul 3743  df-if 3893  df-pw 3964  df-sn 3980  df-pr 3982  df-op 3986  df-uni 4212  df-br 4416  df-opab 4475  df-mpt 4476  df-id 4767  df-xp 4858  df-rel 4859  df-cnv 4860  df-co 4861  df-dm 4862  df-rn 4863  df-res 4864  df-ima 4865  df-iota 5564  df-fun 5602  df-fn 5603  df-f 5604  df-fv 5608  df-riota 6276  df-ac 8572
This theorem is referenced by:  dfac2  8586  axac2  8921
  Copyright terms: Public domain W3C validator