MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfac2a Structured version   Unicode version

Theorem dfac2a 8527
Description: Our Axiom of Choice (in the form of ac3 8859) implies the Axiom of Choice (first form) of [Enderton] p. 49. The proof uses neither AC nor the Axiom of Regularity. See dfac2 8528 for the converse (which does use the Axiom of Regularity). (Contributed by NM, 5-Apr-2004.) (Revised by Mario Carneiro, 26-Jun-2015.)
Assertion
Ref Expression
dfac2a  |-  ( A. x E. y A. z  e.  x  ( z  =/=  (/)  ->  E! w  e.  z  E. v  e.  y  ( z  e.  v  /\  w  e.  v ) )  -> CHOICE )
Distinct variable group:    x, z, y, w, v

Proof of Theorem dfac2a
Dummy variables  f  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 riotauni 6264 . . . . . . . . 9  |-  ( E! w  e.  z  E. v  e.  y  (
z  e.  v  /\  w  e.  v )  ->  ( iota_ w  e.  z  E. v  e.  y  ( z  e.  v  /\  w  e.  v ) )  =  U. { w  e.  z  |  E. v  e.  y  ( z  e.  v  /\  w  e.  v ) } )
2 riotacl 6272 . . . . . . . . 9  |-  ( E! w  e.  z  E. v  e.  y  (
z  e.  v  /\  w  e.  v )  ->  ( iota_ w  e.  z  E. v  e.  y  ( z  e.  v  /\  w  e.  v ) )  e.  z )
31, 2eqeltrrd 2546 . . . . . . . 8  |-  ( E! w  e.  z  E. v  e.  y  (
z  e.  v  /\  w  e.  v )  ->  U. { w  e.  z  |  E. v  e.  y  ( z  e.  v  /\  w  e.  v ) }  e.  z )
4 elequ2 1824 . . . . . . . . . . . . 13  |-  ( u  =  z  ->  (
w  e.  u  <->  w  e.  z ) )
5 elequ1 1822 . . . . . . . . . . . . . . 15  |-  ( u  =  z  ->  (
u  e.  v  <->  z  e.  v ) )
65anbi1d 704 . . . . . . . . . . . . . 14  |-  ( u  =  z  ->  (
( u  e.  v  /\  w  e.  v )  <->  ( z  e.  v  /\  w  e.  v ) ) )
76rexbidv 2968 . . . . . . . . . . . . 13  |-  ( u  =  z  ->  ( E. v  e.  y 
( u  e.  v  /\  w  e.  v )  <->  E. v  e.  y  ( z  e.  v  /\  w  e.  v ) ) )
84, 7anbi12d 710 . . . . . . . . . . . 12  |-  ( u  =  z  ->  (
( w  e.  u  /\  E. v  e.  y  ( u  e.  v  /\  w  e.  v ) )  <->  ( w  e.  z  /\  E. v  e.  y  ( z  e.  v  /\  w  e.  v ) ) ) )
98rabbidva2 3099 . . . . . . . . . . 11  |-  ( u  =  z  ->  { w  e.  u  |  E. v  e.  y  (
u  e.  v  /\  w  e.  v ) }  =  { w  e.  z  |  E. v  e.  y  (
z  e.  v  /\  w  e.  v ) } )
109unieqd 4261 . . . . . . . . . 10  |-  ( u  =  z  ->  U. {
w  e.  u  |  E. v  e.  y  ( u  e.  v  /\  w  e.  v ) }  =  U. { w  e.  z  |  E. v  e.  y  ( z  e.  v  /\  w  e.  v ) } )
11 eqid 2457 . . . . . . . . . 10  |-  ( u  e.  x  |->  U. {
w  e.  u  |  E. v  e.  y  ( u  e.  v  /\  w  e.  v ) } )  =  ( u  e.  x  |-> 
U. { w  e.  u  |  E. v  e.  y  ( u  e.  v  /\  w  e.  v ) } )
12 vex 3112 . . . . . . . . . . . 12  |-  z  e. 
_V
1312rabex 4607 . . . . . . . . . . 11  |-  { w  e.  z  |  E. v  e.  y  (
z  e.  v  /\  w  e.  v ) }  e.  _V
1413uniex 6595 . . . . . . . . . 10  |-  U. {
w  e.  z  |  E. v  e.  y  ( z  e.  v  /\  w  e.  v ) }  e.  _V
1510, 11, 14fvmpt 5956 . . . . . . . . 9  |-  ( z  e.  x  ->  (
( u  e.  x  |-> 
U. { w  e.  u  |  E. v  e.  y  ( u  e.  v  /\  w  e.  v ) } ) `
 z )  = 
U. { w  e.  z  |  E. v  e.  y  ( z  e.  v  /\  w  e.  v ) } )
1615eleq1d 2526 . . . . . . . 8  |-  ( z  e.  x  ->  (
( ( u  e.  x  |->  U. { w  e.  u  |  E. v  e.  y  ( u  e.  v  /\  w  e.  v ) } ) `
 z )  e.  z  <->  U. { w  e.  z  |  E. v  e.  y  ( z  e.  v  /\  w  e.  v ) }  e.  z ) )
173, 16syl5ibr 221 . . . . . . 7  |-  ( z  e.  x  ->  ( E! w  e.  z  E. v  e.  y 
( z  e.  v  /\  w  e.  v )  ->  ( (
u  e.  x  |->  U. { w  e.  u  |  E. v  e.  y  ( u  e.  v  /\  w  e.  v ) } ) `  z )  e.  z ) )
1817imim2d 52 . . . . . 6  |-  ( z  e.  x  ->  (
( z  =/=  (/)  ->  E! w  e.  z  E. v  e.  y  (
z  e.  v  /\  w  e.  v )
)  ->  ( z  =/=  (/)  ->  ( (
u  e.  x  |->  U. { w  e.  u  |  E. v  e.  y  ( u  e.  v  /\  w  e.  v ) } ) `  z )  e.  z ) ) )
1918ralimia 2848 . . . . 5  |-  ( A. z  e.  x  (
z  =/=  (/)  ->  E! w  e.  z  E. v  e.  y  (
z  e.  v  /\  w  e.  v )
)  ->  A. z  e.  x  ( z  =/=  (/)  ->  ( (
u  e.  x  |->  U. { w  e.  u  |  E. v  e.  y  ( u  e.  v  /\  w  e.  v ) } ) `  z )  e.  z ) )
20 ssrab2 3581 . . . . . . . . . . 11  |-  { w  e.  u  |  E. v  e.  y  (
u  e.  v  /\  w  e.  v ) }  C_  u
21 elssuni 4281 . . . . . . . . . . 11  |-  ( u  e.  x  ->  u  C_ 
U. x )
2220, 21syl5ss 3510 . . . . . . . . . 10  |-  ( u  e.  x  ->  { w  e.  u  |  E. v  e.  y  (
u  e.  v  /\  w  e.  v ) }  C_  U. x )
2322unissd 4275 . . . . . . . . 9  |-  ( u  e.  x  ->  U. {
w  e.  u  |  E. v  e.  y  ( u  e.  v  /\  w  e.  v ) }  C_  U. U. x )
24 vex 3112 . . . . . . . . . . . 12  |-  x  e. 
_V
2524uniex 6595 . . . . . . . . . . 11  |-  U. x  e.  _V
2625uniex 6595 . . . . . . . . . 10  |-  U. U. x  e.  _V
2726elpw2 4620 . . . . . . . . 9  |-  ( U. { w  e.  u  |  E. v  e.  y  ( u  e.  v  /\  w  e.  v ) }  e.  ~P U.
U. x  <->  U. { w  e.  u  |  E. v  e.  y  (
u  e.  v  /\  w  e.  v ) }  C_  U. U. x
)
2823, 27sylibr 212 . . . . . . . 8  |-  ( u  e.  x  ->  U. {
w  e.  u  |  E. v  e.  y  ( u  e.  v  /\  w  e.  v ) }  e.  ~P U.
U. x )
2911, 28fmpti 6055 . . . . . . 7  |-  ( u  e.  x  |->  U. {
w  e.  u  |  E. v  e.  y  ( u  e.  v  /\  w  e.  v ) } ) : x --> ~P U. U. x
3026pwex 4639 . . . . . . 7  |-  ~P U. U. x  e.  _V
31 fex2 6754 . . . . . . 7  |-  ( ( ( u  e.  x  |-> 
U. { w  e.  u  |  E. v  e.  y  ( u  e.  v  /\  w  e.  v ) } ) : x --> ~P U. U. x  /\  x  e. 
_V  /\  ~P U. U. x  e.  _V )  ->  ( u  e.  x  |-> 
U. { w  e.  u  |  E. v  e.  y  ( u  e.  v  /\  w  e.  v ) } )  e.  _V )
3229, 24, 30, 31mp3an 1324 . . . . . 6  |-  ( u  e.  x  |->  U. {
w  e.  u  |  E. v  e.  y  ( u  e.  v  /\  w  e.  v ) } )  e. 
_V
33 fveq1 5871 . . . . . . . . 9  |-  ( f  =  ( u  e.  x  |->  U. { w  e.  u  |  E. v  e.  y  ( u  e.  v  /\  w  e.  v ) } )  ->  ( f `  z )  =  ( ( u  e.  x  |-> 
U. { w  e.  u  |  E. v  e.  y  ( u  e.  v  /\  w  e.  v ) } ) `
 z ) )
3433eleq1d 2526 . . . . . . . 8  |-  ( f  =  ( u  e.  x  |->  U. { w  e.  u  |  E. v  e.  y  ( u  e.  v  /\  w  e.  v ) } )  ->  ( ( f `
 z )  e.  z  <->  ( ( u  e.  x  |->  U. {
w  e.  u  |  E. v  e.  y  ( u  e.  v  /\  w  e.  v ) } ) `  z )  e.  z ) )
3534imbi2d 316 . . . . . . 7  |-  ( f  =  ( u  e.  x  |->  U. { w  e.  u  |  E. v  e.  y  ( u  e.  v  /\  w  e.  v ) } )  ->  ( ( z  =/=  (/)  ->  ( f `  z )  e.  z )  <->  ( z  =/=  (/)  ->  ( ( u  e.  x  |->  U. {
w  e.  u  |  E. v  e.  y  ( u  e.  v  /\  w  e.  v ) } ) `  z )  e.  z ) ) )
3635ralbidv 2896 . . . . . 6  |-  ( f  =  ( u  e.  x  |->  U. { w  e.  u  |  E. v  e.  y  ( u  e.  v  /\  w  e.  v ) } )  ->  ( A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  z )  <->  A. z  e.  x  ( z  =/=  (/)  ->  (
( u  e.  x  |-> 
U. { w  e.  u  |  E. v  e.  y  ( u  e.  v  /\  w  e.  v ) } ) `
 z )  e.  z ) ) )
3732, 36spcev 3201 . . . . 5  |-  ( A. z  e.  x  (
z  =/=  (/)  ->  (
( u  e.  x  |-> 
U. { w  e.  u  |  E. v  e.  y  ( u  e.  v  /\  w  e.  v ) } ) `
 z )  e.  z )  ->  E. f A. z  e.  x  ( z  =/=  (/)  ->  (
f `  z )  e.  z ) )
3819, 37syl 16 . . . 4  |-  ( A. z  e.  x  (
z  =/=  (/)  ->  E! w  e.  z  E. v  e.  y  (
z  e.  v  /\  w  e.  v )
)  ->  E. f A. z  e.  x  ( z  =/=  (/)  ->  (
f `  z )  e.  z ) )
3938exlimiv 1723 . . 3  |-  ( E. y A. z  e.  x  ( z  =/=  (/)  ->  E! w  e.  z  E. v  e.  y  ( z  e.  v  /\  w  e.  v ) )  ->  E. f A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  z ) )
4039alimi 1634 . 2  |-  ( A. x E. y A. z  e.  x  ( z  =/=  (/)  ->  E! w  e.  z  E. v  e.  y  ( z  e.  v  /\  w  e.  v ) )  ->  A. x E. f A. z  e.  x  (
z  =/=  (/)  ->  (
f `  z )  e.  z ) )
41 dfac3 8519 . 2  |-  (CHOICE  <->  A. x E. f A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  z ) )
4240, 41sylibr 212 1  |-  ( A. x E. y A. z  e.  x  ( z  =/=  (/)  ->  E! w  e.  z  E. v  e.  y  ( z  e.  v  /\  w  e.  v ) )  -> CHOICE )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369   A.wal 1393    = wceq 1395   E.wex 1613    e. wcel 1819    =/= wne 2652   A.wral 2807   E.wrex 2808   E!wreu 2809   {crab 2811   _Vcvv 3109    C_ wss 3471   (/)c0 3793   ~Pcpw 4015   U.cuni 4251    |-> cmpt 4515   -->wf 5590   ` cfv 5594   iota_crio 6257  CHOICEwac 8513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-reu 2814  df-rab 2816  df-v 3111  df-sbc 3328  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-op 4039  df-uni 4252  df-br 4457  df-opab 4516  df-mpt 4517  df-id 4804  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-fv 5602  df-riota 6258  df-ac 8514
This theorem is referenced by:  dfac2  8528  axac2  8863
  Copyright terms: Public domain W3C validator