MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfac2a Structured version   Unicode version

Theorem dfac2a 8511
Description: Our Axiom of Choice (in the form of ac3 8843) implies the Axiom of Choice (first form) of [Enderton] p. 49. The proof uses neither AC nor the Axiom of Regularity. See dfac2 8512 for the converse (which does use the Axiom of Regularity). (Contributed by NM, 5-Apr-2004.) (Revised by Mario Carneiro, 26-Jun-2015.)
Assertion
Ref Expression
dfac2a  |-  ( A. x E. y A. z  e.  x  ( z  =/=  (/)  ->  E! w  e.  z  E. v  e.  y  ( z  e.  v  /\  w  e.  v ) )  -> CHOICE )
Distinct variable group:    x, z, y, w, v

Proof of Theorem dfac2a
Dummy variables  f  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 riotauni 6217 . . . . . . . . 9  |-  ( E! w  e.  z  E. v  e.  y  (
z  e.  v  /\  w  e.  v )  ->  ( iota_ w  e.  z  E. v  e.  y  ( z  e.  v  /\  w  e.  v ) )  =  U. { w  e.  z  |  E. v  e.  y  ( z  e.  v  /\  w  e.  v ) } )
2 riotacl 6225 . . . . . . . . 9  |-  ( E! w  e.  z  E. v  e.  y  (
z  e.  v  /\  w  e.  v )  ->  ( iota_ w  e.  z  E. v  e.  y  ( z  e.  v  /\  w  e.  v ) )  e.  z )
31, 2eqeltrrd 2507 . . . . . . . 8  |-  ( E! w  e.  z  E. v  e.  y  (
z  e.  v  /\  w  e.  v )  ->  U. { w  e.  z  |  E. v  e.  y  ( z  e.  v  /\  w  e.  v ) }  e.  z )
4 elequ2 1877 . . . . . . . . . . . . 13  |-  ( u  =  z  ->  (
w  e.  u  <->  w  e.  z ) )
5 elequ1 1875 . . . . . . . . . . . . . . 15  |-  ( u  =  z  ->  (
u  e.  v  <->  z  e.  v ) )
65anbi1d 709 . . . . . . . . . . . . . 14  |-  ( u  =  z  ->  (
( u  e.  v  /\  w  e.  v )  <->  ( z  e.  v  /\  w  e.  v ) ) )
76rexbidv 2878 . . . . . . . . . . . . 13  |-  ( u  =  z  ->  ( E. v  e.  y 
( u  e.  v  /\  w  e.  v )  <->  E. v  e.  y  ( z  e.  v  /\  w  e.  v ) ) )
84, 7anbi12d 715 . . . . . . . . . . . 12  |-  ( u  =  z  ->  (
( w  e.  u  /\  E. v  e.  y  ( u  e.  v  /\  w  e.  v ) )  <->  ( w  e.  z  /\  E. v  e.  y  ( z  e.  v  /\  w  e.  v ) ) ) )
98rabbidva2 3011 . . . . . . . . . . 11  |-  ( u  =  z  ->  { w  e.  u  |  E. v  e.  y  (
u  e.  v  /\  w  e.  v ) }  =  { w  e.  z  |  E. v  e.  y  (
z  e.  v  /\  w  e.  v ) } )
109unieqd 4172 . . . . . . . . . 10  |-  ( u  =  z  ->  U. {
w  e.  u  |  E. v  e.  y  ( u  e.  v  /\  w  e.  v ) }  =  U. { w  e.  z  |  E. v  e.  y  ( z  e.  v  /\  w  e.  v ) } )
11 eqid 2428 . . . . . . . . . 10  |-  ( u  e.  x  |->  U. {
w  e.  u  |  E. v  e.  y  ( u  e.  v  /\  w  e.  v ) } )  =  ( u  e.  x  |-> 
U. { w  e.  u  |  E. v  e.  y  ( u  e.  v  /\  w  e.  v ) } )
12 vex 3025 . . . . . . . . . . . 12  |-  z  e. 
_V
1312rabex 4518 . . . . . . . . . . 11  |-  { w  e.  z  |  E. v  e.  y  (
z  e.  v  /\  w  e.  v ) }  e.  _V
1413uniex 6545 . . . . . . . . . 10  |-  U. {
w  e.  z  |  E. v  e.  y  ( z  e.  v  /\  w  e.  v ) }  e.  _V
1510, 11, 14fvmpt 5908 . . . . . . . . 9  |-  ( z  e.  x  ->  (
( u  e.  x  |-> 
U. { w  e.  u  |  E. v  e.  y  ( u  e.  v  /\  w  e.  v ) } ) `
 z )  = 
U. { w  e.  z  |  E. v  e.  y  ( z  e.  v  /\  w  e.  v ) } )
1615eleq1d 2490 . . . . . . . 8  |-  ( z  e.  x  ->  (
( ( u  e.  x  |->  U. { w  e.  u  |  E. v  e.  y  ( u  e.  v  /\  w  e.  v ) } ) `
 z )  e.  z  <->  U. { w  e.  z  |  E. v  e.  y  ( z  e.  v  /\  w  e.  v ) }  e.  z ) )
173, 16syl5ibr 224 . . . . . . 7  |-  ( z  e.  x  ->  ( E! w  e.  z  E. v  e.  y 
( z  e.  v  /\  w  e.  v )  ->  ( (
u  e.  x  |->  U. { w  e.  u  |  E. v  e.  y  ( u  e.  v  /\  w  e.  v ) } ) `  z )  e.  z ) )
1817imim2d 54 . . . . . 6  |-  ( z  e.  x  ->  (
( z  =/=  (/)  ->  E! w  e.  z  E. v  e.  y  (
z  e.  v  /\  w  e.  v )
)  ->  ( z  =/=  (/)  ->  ( (
u  e.  x  |->  U. { w  e.  u  |  E. v  e.  y  ( u  e.  v  /\  w  e.  v ) } ) `  z )  e.  z ) ) )
1918ralimia 2756 . . . . 5  |-  ( A. z  e.  x  (
z  =/=  (/)  ->  E! w  e.  z  E. v  e.  y  (
z  e.  v  /\  w  e.  v )
)  ->  A. z  e.  x  ( z  =/=  (/)  ->  ( (
u  e.  x  |->  U. { w  e.  u  |  E. v  e.  y  ( u  e.  v  /\  w  e.  v ) } ) `  z )  e.  z ) )
20 ssrab2 3489 . . . . . . . . . . 11  |-  { w  e.  u  |  E. v  e.  y  (
u  e.  v  /\  w  e.  v ) }  C_  u
21 elssuni 4191 . . . . . . . . . . 11  |-  ( u  e.  x  ->  u  C_ 
U. x )
2220, 21syl5ss 3418 . . . . . . . . . 10  |-  ( u  e.  x  ->  { w  e.  u  |  E. v  e.  y  (
u  e.  v  /\  w  e.  v ) }  C_  U. x )
2322unissd 4186 . . . . . . . . 9  |-  ( u  e.  x  ->  U. {
w  e.  u  |  E. v  e.  y  ( u  e.  v  /\  w  e.  v ) }  C_  U. U. x )
24 vex 3025 . . . . . . . . . . . 12  |-  x  e. 
_V
2524uniex 6545 . . . . . . . . . . 11  |-  U. x  e.  _V
2625uniex 6545 . . . . . . . . . 10  |-  U. U. x  e.  _V
2726elpw2 4531 . . . . . . . . 9  |-  ( U. { w  e.  u  |  E. v  e.  y  ( u  e.  v  /\  w  e.  v ) }  e.  ~P U.
U. x  <->  U. { w  e.  u  |  E. v  e.  y  (
u  e.  v  /\  w  e.  v ) }  C_  U. U. x
)
2823, 27sylibr 215 . . . . . . . 8  |-  ( u  e.  x  ->  U. {
w  e.  u  |  E. v  e.  y  ( u  e.  v  /\  w  e.  v ) }  e.  ~P U.
U. x )
2911, 28fmpti 6004 . . . . . . 7  |-  ( u  e.  x  |->  U. {
w  e.  u  |  E. v  e.  y  ( u  e.  v  /\  w  e.  v ) } ) : x --> ~P U. U. x
3026pwex 4550 . . . . . . 7  |-  ~P U. U. x  e.  _V
31 fex2 6706 . . . . . . 7  |-  ( ( ( u  e.  x  |-> 
U. { w  e.  u  |  E. v  e.  y  ( u  e.  v  /\  w  e.  v ) } ) : x --> ~P U. U. x  /\  x  e. 
_V  /\  ~P U. U. x  e.  _V )  ->  ( u  e.  x  |-> 
U. { w  e.  u  |  E. v  e.  y  ( u  e.  v  /\  w  e.  v ) } )  e.  _V )
3229, 24, 30, 31mp3an 1360 . . . . . 6  |-  ( u  e.  x  |->  U. {
w  e.  u  |  E. v  e.  y  ( u  e.  v  /\  w  e.  v ) } )  e. 
_V
33 fveq1 5824 . . . . . . . . 9  |-  ( f  =  ( u  e.  x  |->  U. { w  e.  u  |  E. v  e.  y  ( u  e.  v  /\  w  e.  v ) } )  ->  ( f `  z )  =  ( ( u  e.  x  |-> 
U. { w  e.  u  |  E. v  e.  y  ( u  e.  v  /\  w  e.  v ) } ) `
 z ) )
3433eleq1d 2490 . . . . . . . 8  |-  ( f  =  ( u  e.  x  |->  U. { w  e.  u  |  E. v  e.  y  ( u  e.  v  /\  w  e.  v ) } )  ->  ( ( f `
 z )  e.  z  <->  ( ( u  e.  x  |->  U. {
w  e.  u  |  E. v  e.  y  ( u  e.  v  /\  w  e.  v ) } ) `  z )  e.  z ) )
3534imbi2d 317 . . . . . . 7  |-  ( f  =  ( u  e.  x  |->  U. { w  e.  u  |  E. v  e.  y  ( u  e.  v  /\  w  e.  v ) } )  ->  ( ( z  =/=  (/)  ->  ( f `  z )  e.  z )  <->  ( z  =/=  (/)  ->  ( ( u  e.  x  |->  U. {
w  e.  u  |  E. v  e.  y  ( u  e.  v  /\  w  e.  v ) } ) `  z )  e.  z ) ) )
3635ralbidv 2804 . . . . . 6  |-  ( f  =  ( u  e.  x  |->  U. { w  e.  u  |  E. v  e.  y  ( u  e.  v  /\  w  e.  v ) } )  ->  ( A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  z )  <->  A. z  e.  x  ( z  =/=  (/)  ->  (
( u  e.  x  |-> 
U. { w  e.  u  |  E. v  e.  y  ( u  e.  v  /\  w  e.  v ) } ) `
 z )  e.  z ) ) )
3732, 36spcev 3116 . . . . 5  |-  ( A. z  e.  x  (
z  =/=  (/)  ->  (
( u  e.  x  |-> 
U. { w  e.  u  |  E. v  e.  y  ( u  e.  v  /\  w  e.  v ) } ) `
 z )  e.  z )  ->  E. f A. z  e.  x  ( z  =/=  (/)  ->  (
f `  z )  e.  z ) )
3819, 37syl 17 . . . 4  |-  ( A. z  e.  x  (
z  =/=  (/)  ->  E! w  e.  z  E. v  e.  y  (
z  e.  v  /\  w  e.  v )
)  ->  E. f A. z  e.  x  ( z  =/=  (/)  ->  (
f `  z )  e.  z ) )
3938exlimiv 1770 . . 3  |-  ( E. y A. z  e.  x  ( z  =/=  (/)  ->  E! w  e.  z  E. v  e.  y  ( z  e.  v  /\  w  e.  v ) )  ->  E. f A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  z ) )
4039alimi 1678 . 2  |-  ( A. x E. y A. z  e.  x  ( z  =/=  (/)  ->  E! w  e.  z  E. v  e.  y  ( z  e.  v  /\  w  e.  v ) )  ->  A. x E. f A. z  e.  x  (
z  =/=  (/)  ->  (
f `  z )  e.  z ) )
41 dfac3 8503 . 2  |-  (CHOICE  <->  A. x E. f A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  z ) )
4240, 41sylibr 215 1  |-  ( A. x E. y A. z  e.  x  ( z  =/=  (/)  ->  E! w  e.  z  E. v  e.  y  ( z  e.  v  /\  w  e.  v ) )  -> CHOICE )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 370   A.wal 1435    = wceq 1437   E.wex 1657    e. wcel 1872    =/= wne 2599   A.wral 2714   E.wrex 2715   E!wreu 2716   {crab 2718   _Vcvv 3022    C_ wss 3379   (/)c0 3704   ~Pcpw 3924   U.cuni 4162    |-> cmpt 4425   -->wf 5540   ` cfv 5544   iota_crio 6210  CHOICEwac 8497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2063  ax-ext 2408  ax-sep 4489  ax-nul 4498  ax-pow 4545  ax-pr 4603  ax-un 6541
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2280  df-mo 2281  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2558  df-ne 2601  df-ral 2719  df-rex 2720  df-reu 2721  df-rab 2723  df-v 3024  df-sbc 3243  df-dif 3382  df-un 3384  df-in 3386  df-ss 3393  df-nul 3705  df-if 3855  df-pw 3926  df-sn 3942  df-pr 3944  df-op 3948  df-uni 4163  df-br 4367  df-opab 4426  df-mpt 4427  df-id 4711  df-xp 4802  df-rel 4803  df-cnv 4804  df-co 4805  df-dm 4806  df-rn 4807  df-res 4808  df-ima 4809  df-iota 5508  df-fun 5546  df-fn 5547  df-f 5548  df-fv 5552  df-riota 6211  df-ac 8498
This theorem is referenced by:  dfac2  8512  axac2  8847
  Copyright terms: Public domain W3C validator