MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfac2a Structured version   Unicode version

Theorem dfac2a 8295
Description: Our Axiom of Choice (in the form of ac3 8627) implies the Axiom of Choice (first form) of [Enderton] p. 49. The proof uses neither AC nor the Axiom of Regularity. See dfac2 8296 for the converse (which does use the Axiom of Regularity). (Contributed by NM, 5-Apr-2004.) (Revised by Mario Carneiro, 26-Jun-2015.)
Assertion
Ref Expression
dfac2a  |-  ( A. x E. y A. z  e.  x  ( z  =/=  (/)  ->  E! w  e.  z  E. v  e.  y  ( z  e.  v  /\  w  e.  v ) )  -> CHOICE )
Distinct variable group:    x, z, y, w, v

Proof of Theorem dfac2a
Dummy variables  f  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 riotauni 6056 . . . . . . . . 9  |-  ( E! w  e.  z  E. v  e.  y  (
z  e.  v  /\  w  e.  v )  ->  ( iota_ w  e.  z  E. v  e.  y  ( z  e.  v  /\  w  e.  v ) )  =  U. { w  e.  z  |  E. v  e.  y  ( z  e.  v  /\  w  e.  v ) } )
2 riotacl 6065 . . . . . . . . 9  |-  ( E! w  e.  z  E. v  e.  y  (
z  e.  v  /\  w  e.  v )  ->  ( iota_ w  e.  z  E. v  e.  y  ( z  e.  v  /\  w  e.  v ) )  e.  z )
31, 2eqeltrrd 2516 . . . . . . . 8  |-  ( E! w  e.  z  E. v  e.  y  (
z  e.  v  /\  w  e.  v )  ->  U. { w  e.  z  |  E. v  e.  y  ( z  e.  v  /\  w  e.  v ) }  e.  z )
4 elequ2 1766 . . . . . . . . . . . . . 14  |-  ( u  =  z  ->  (
w  e.  u  <->  w  e.  z ) )
5 elequ1 1764 . . . . . . . . . . . . . . . 16  |-  ( u  =  z  ->  (
u  e.  v  <->  z  e.  v ) )
65anbi1d 699 . . . . . . . . . . . . . . 15  |-  ( u  =  z  ->  (
( u  e.  v  /\  w  e.  v )  <->  ( z  e.  v  /\  w  e.  v ) ) )
76rexbidv 2734 . . . . . . . . . . . . . 14  |-  ( u  =  z  ->  ( E. v  e.  y 
( u  e.  v  /\  w  e.  v )  <->  E. v  e.  y  ( z  e.  v  /\  w  e.  v ) ) )
84, 7anbi12d 705 . . . . . . . . . . . . 13  |-  ( u  =  z  ->  (
( w  e.  u  /\  E. v  e.  y  ( u  e.  v  /\  w  e.  v ) )  <->  ( w  e.  z  /\  E. v  e.  y  ( z  e.  v  /\  w  e.  v ) ) ) )
98abbidv 2555 . . . . . . . . . . . 12  |-  ( u  =  z  ->  { w  |  ( w  e.  u  /\  E. v  e.  y  ( u  e.  v  /\  w  e.  v ) ) }  =  { w  |  ( w  e.  z  /\  E. v  e.  y  ( z  e.  v  /\  w  e.  v ) ) } )
10 df-rab 2722 . . . . . . . . . . . 12  |-  { w  e.  u  |  E. v  e.  y  (
u  e.  v  /\  w  e.  v ) }  =  { w  |  ( w  e.  u  /\  E. v  e.  y  ( u  e.  v  /\  w  e.  v ) ) }
11 df-rab 2722 . . . . . . . . . . . 12  |-  { w  e.  z  |  E. v  e.  y  (
z  e.  v  /\  w  e.  v ) }  =  { w  |  ( w  e.  z  /\  E. v  e.  y  ( z  e.  v  /\  w  e.  v ) ) }
129, 10, 113eqtr4g 2498 . . . . . . . . . . 11  |-  ( u  =  z  ->  { w  e.  u  |  E. v  e.  y  (
u  e.  v  /\  w  e.  v ) }  =  { w  e.  z  |  E. v  e.  y  (
z  e.  v  /\  w  e.  v ) } )
1312unieqd 4098 . . . . . . . . . 10  |-  ( u  =  z  ->  U. {
w  e.  u  |  E. v  e.  y  ( u  e.  v  /\  w  e.  v ) }  =  U. { w  e.  z  |  E. v  e.  y  ( z  e.  v  /\  w  e.  v ) } )
14 eqid 2441 . . . . . . . . . 10  |-  ( u  e.  x  |->  U. {
w  e.  u  |  E. v  e.  y  ( u  e.  v  /\  w  e.  v ) } )  =  ( u  e.  x  |-> 
U. { w  e.  u  |  E. v  e.  y  ( u  e.  v  /\  w  e.  v ) } )
15 vex 2973 . . . . . . . . . . . 12  |-  z  e. 
_V
1615rabex 4440 . . . . . . . . . . 11  |-  { w  e.  z  |  E. v  e.  y  (
z  e.  v  /\  w  e.  v ) }  e.  _V
1716uniex 6375 . . . . . . . . . 10  |-  U. {
w  e.  z  |  E. v  e.  y  ( z  e.  v  /\  w  e.  v ) }  e.  _V
1813, 14, 17fvmpt 5771 . . . . . . . . 9  |-  ( z  e.  x  ->  (
( u  e.  x  |-> 
U. { w  e.  u  |  E. v  e.  y  ( u  e.  v  /\  w  e.  v ) } ) `
 z )  = 
U. { w  e.  z  |  E. v  e.  y  ( z  e.  v  /\  w  e.  v ) } )
1918eleq1d 2507 . . . . . . . 8  |-  ( z  e.  x  ->  (
( ( u  e.  x  |->  U. { w  e.  u  |  E. v  e.  y  ( u  e.  v  /\  w  e.  v ) } ) `
 z )  e.  z  <->  U. { w  e.  z  |  E. v  e.  y  ( z  e.  v  /\  w  e.  v ) }  e.  z ) )
203, 19syl5ibr 221 . . . . . . 7  |-  ( z  e.  x  ->  ( E! w  e.  z  E. v  e.  y 
( z  e.  v  /\  w  e.  v )  ->  ( (
u  e.  x  |->  U. { w  e.  u  |  E. v  e.  y  ( u  e.  v  /\  w  e.  v ) } ) `  z )  e.  z ) )
2120imim2d 52 . . . . . 6  |-  ( z  e.  x  ->  (
( z  =/=  (/)  ->  E! w  e.  z  E. v  e.  y  (
z  e.  v  /\  w  e.  v )
)  ->  ( z  =/=  (/)  ->  ( (
u  e.  x  |->  U. { w  e.  u  |  E. v  e.  y  ( u  e.  v  /\  w  e.  v ) } ) `  z )  e.  z ) ) )
2221ralimia 2787 . . . . 5  |-  ( A. z  e.  x  (
z  =/=  (/)  ->  E! w  e.  z  E. v  e.  y  (
z  e.  v  /\  w  e.  v )
)  ->  A. z  e.  x  ( z  =/=  (/)  ->  ( (
u  e.  x  |->  U. { w  e.  u  |  E. v  e.  y  ( u  e.  v  /\  w  e.  v ) } ) `  z )  e.  z ) )
23 ssrab2 3434 . . . . . . . . . . 11  |-  { w  e.  u  |  E. v  e.  y  (
u  e.  v  /\  w  e.  v ) }  C_  u
24 elssuni 4118 . . . . . . . . . . 11  |-  ( u  e.  x  ->  u  C_ 
U. x )
2523, 24syl5ss 3364 . . . . . . . . . 10  |-  ( u  e.  x  ->  { w  e.  u  |  E. v  e.  y  (
u  e.  v  /\  w  e.  v ) }  C_  U. x )
2625unissd 4112 . . . . . . . . 9  |-  ( u  e.  x  ->  U. {
w  e.  u  |  E. v  e.  y  ( u  e.  v  /\  w  e.  v ) }  C_  U. U. x )
27 vex 2973 . . . . . . . . . . . 12  |-  x  e. 
_V
2827uniex 6375 . . . . . . . . . . 11  |-  U. x  e.  _V
2928uniex 6375 . . . . . . . . . 10  |-  U. U. x  e.  _V
3029elpw2 4453 . . . . . . . . 9  |-  ( U. { w  e.  u  |  E. v  e.  y  ( u  e.  v  /\  w  e.  v ) }  e.  ~P U.
U. x  <->  U. { w  e.  u  |  E. v  e.  y  (
u  e.  v  /\  w  e.  v ) }  C_  U. U. x
)
3126, 30sylibr 212 . . . . . . . 8  |-  ( u  e.  x  ->  U. {
w  e.  u  |  E. v  e.  y  ( u  e.  v  /\  w  e.  v ) }  e.  ~P U.
U. x )
3214, 31fmpti 5863 . . . . . . 7  |-  ( u  e.  x  |->  U. {
w  e.  u  |  E. v  e.  y  ( u  e.  v  /\  w  e.  v ) } ) : x --> ~P U. U. x
3329pwex 4472 . . . . . . 7  |-  ~P U. U. x  e.  _V
34 fex2 6531 . . . . . . 7  |-  ( ( ( u  e.  x  |-> 
U. { w  e.  u  |  E. v  e.  y  ( u  e.  v  /\  w  e.  v ) } ) : x --> ~P U. U. x  /\  x  e. 
_V  /\  ~P U. U. x  e.  _V )  ->  ( u  e.  x  |-> 
U. { w  e.  u  |  E. v  e.  y  ( u  e.  v  /\  w  e.  v ) } )  e.  _V )
3532, 27, 33, 34mp3an 1309 . . . . . 6  |-  ( u  e.  x  |->  U. {
w  e.  u  |  E. v  e.  y  ( u  e.  v  /\  w  e.  v ) } )  e. 
_V
36 fveq1 5687 . . . . . . . . 9  |-  ( f  =  ( u  e.  x  |->  U. { w  e.  u  |  E. v  e.  y  ( u  e.  v  /\  w  e.  v ) } )  ->  ( f `  z )  =  ( ( u  e.  x  |-> 
U. { w  e.  u  |  E. v  e.  y  ( u  e.  v  /\  w  e.  v ) } ) `
 z ) )
3736eleq1d 2507 . . . . . . . 8  |-  ( f  =  ( u  e.  x  |->  U. { w  e.  u  |  E. v  e.  y  ( u  e.  v  /\  w  e.  v ) } )  ->  ( ( f `
 z )  e.  z  <->  ( ( u  e.  x  |->  U. {
w  e.  u  |  E. v  e.  y  ( u  e.  v  /\  w  e.  v ) } ) `  z )  e.  z ) )
3837imbi2d 316 . . . . . . 7  |-  ( f  =  ( u  e.  x  |->  U. { w  e.  u  |  E. v  e.  y  ( u  e.  v  /\  w  e.  v ) } )  ->  ( ( z  =/=  (/)  ->  ( f `  z )  e.  z )  <->  ( z  =/=  (/)  ->  ( ( u  e.  x  |->  U. {
w  e.  u  |  E. v  e.  y  ( u  e.  v  /\  w  e.  v ) } ) `  z )  e.  z ) ) )
3938ralbidv 2733 . . . . . 6  |-  ( f  =  ( u  e.  x  |->  U. { w  e.  u  |  E. v  e.  y  ( u  e.  v  /\  w  e.  v ) } )  ->  ( A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  z )  <->  A. z  e.  x  ( z  =/=  (/)  ->  (
( u  e.  x  |-> 
U. { w  e.  u  |  E. v  e.  y  ( u  e.  v  /\  w  e.  v ) } ) `
 z )  e.  z ) ) )
4035, 39spcev 3061 . . . . 5  |-  ( A. z  e.  x  (
z  =/=  (/)  ->  (
( u  e.  x  |-> 
U. { w  e.  u  |  E. v  e.  y  ( u  e.  v  /\  w  e.  v ) } ) `
 z )  e.  z )  ->  E. f A. z  e.  x  ( z  =/=  (/)  ->  (
f `  z )  e.  z ) )
4122, 40syl 16 . . . 4  |-  ( A. z  e.  x  (
z  =/=  (/)  ->  E! w  e.  z  E. v  e.  y  (
z  e.  v  /\  w  e.  v )
)  ->  E. f A. z  e.  x  ( z  =/=  (/)  ->  (
f `  z )  e.  z ) )
4241exlimiv 1693 . . 3  |-  ( E. y A. z  e.  x  ( z  =/=  (/)  ->  E! w  e.  z  E. v  e.  y  ( z  e.  v  /\  w  e.  v ) )  ->  E. f A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  z ) )
4342alimi 1609 . 2  |-  ( A. x E. y A. z  e.  x  ( z  =/=  (/)  ->  E! w  e.  z  E. v  e.  y  ( z  e.  v  /\  w  e.  v ) )  ->  A. x E. f A. z  e.  x  (
z  =/=  (/)  ->  (
f `  z )  e.  z ) )
44 dfac3 8287 . 2  |-  (CHOICE  <->  A. x E. f A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  z ) )
4543, 44sylibr 212 1  |-  ( A. x E. y A. z  e.  x  ( z  =/=  (/)  ->  E! w  e.  z  E. v  e.  y  ( z  e.  v  /\  w  e.  v ) )  -> CHOICE )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369   A.wal 1362    = wceq 1364   E.wex 1591    e. wcel 1761   {cab 2427    =/= wne 2604   A.wral 2713   E.wrex 2714   E!wreu 2715   {crab 2717   _Vcvv 2970    C_ wss 3325   (/)c0 3634   ~Pcpw 3857   U.cuni 4088    e. cmpt 4347   -->wf 5411   ` cfv 5415   iota_crio 6048  CHOICEwac 8281
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-ral 2718  df-rex 2719  df-reu 2720  df-rab 2722  df-v 2972  df-sbc 3184  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-op 3881  df-uni 4089  df-br 4290  df-opab 4348  df-mpt 4349  df-id 4632  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-fv 5423  df-riota 6049  df-ac 8282
This theorem is referenced by:  dfac2  8296  axac2  8631
  Copyright terms: Public domain W3C validator