MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfac2 Structured version   Unicode version

Theorem dfac2 8500
Description: Axiom of Choice (first form) of [Enderton] p. 49 implies of our Axiom of Choice (in the form of ac3 8831). The proof does not make use of AC. Note that the Axiom of Regularity is used by the proof. Specifically, elirrv 8012 and preleq 8023 that are referenced in the proof each make use of Regularity for their derivations. (The reverse implication can be derived without using Regularity; see dfac2a 8499.) TODO: Fix label in comment, and put label changes into list at top of set.mm. (Contributed by NM, 5-Apr-2004.) (Revised by Mario Carneiro, 26-Jun-2015.)
Assertion
Ref Expression
dfac2  |-  (CHOICE  <->  A. x E. y A. z  e.  x  ( z  =/=  (/)  ->  E! w  e.  z  E. v  e.  y  ( z  e.  v  /\  w  e.  v ) ) )
Distinct variable group:    x, y, z, w, v

Proof of Theorem dfac2
Dummy variables  u  f  g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfac3 8491 . . 3  |-  (CHOICE  <->  A. x E. f A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  z ) )
2 nfra1 2838 . . . . . . 7  |-  F/ z A. z  e.  x  ( z  =/=  (/)  ->  (
f `  z )  e.  z )
3 rsp 2823 . . . . . . . . . . . . 13  |-  ( A. z  e.  x  (
z  =/=  (/)  ->  (
f `  z )  e.  z )  ->  (
z  e.  x  -> 
( z  =/=  (/)  ->  (
f `  z )  e.  z ) ) )
4 equid 1735 . . . . . . . . . . . . . . . . . . 19  |-  z  =  z
5 neeq1 2741 . . . . . . . . . . . . . . . . . . . . 21  |-  ( u  =  z  ->  (
u  =/=  (/)  <->  z  =/=  (/) ) )
6 eqeq1 2464 . . . . . . . . . . . . . . . . . . . . 21  |-  ( u  =  z  ->  (
u  =  z  <->  z  =  z ) )
75, 6anbi12d 710 . . . . . . . . . . . . . . . . . . . 20  |-  ( u  =  z  ->  (
( u  =/=  (/)  /\  u  =  z )  <->  ( z  =/=  (/)  /\  z  =  z ) ) )
87rspcev 3207 . . . . . . . . . . . . . . . . . . 19  |-  ( ( z  e.  x  /\  ( z  =/=  (/)  /\  z  =  z ) )  ->  E. u  e.  x  ( u  =/=  (/)  /\  u  =  z ) )
94, 8mpanr2 684 . . . . . . . . . . . . . . . . . 18  |-  ( ( z  e.  x  /\  z  =/=  (/) )  ->  E. u  e.  x  ( u  =/=  (/)  /\  u  =  z ) )
10 fveq2 5857 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( u  =  z  ->  (
f `  u )  =  ( f `  z ) )
1110preq1d 4105 . . . . . . . . . . . . . . . . . . . . 21  |-  ( u  =  z  ->  { ( f `  u ) ,  u }  =  { ( f `  z ) ,  u } )
12 preq2 4100 . . . . . . . . . . . . . . . . . . . . 21  |-  ( u  =  z  ->  { ( f `  z ) ,  u }  =  { ( f `  z ) ,  z } )
1311, 12eqtr2d 2502 . . . . . . . . . . . . . . . . . . . 20  |-  ( u  =  z  ->  { ( f `  z ) ,  z }  =  { ( f `  u ) ,  u } )
1413anim2i 569 . . . . . . . . . . . . . . . . . . 19  |-  ( ( u  =/=  (/)  /\  u  =  z )  -> 
( u  =/=  (/)  /\  {
( f `  z
) ,  z }  =  { ( f `
 u ) ,  u } ) )
1514reximi 2925 . . . . . . . . . . . . . . . . . 18  |-  ( E. u  e.  x  ( u  =/=  (/)  /\  u  =  z )  ->  E. u  e.  x  ( u  =/=  (/)  /\  {
( f `  z
) ,  z }  =  { ( f `
 u ) ,  u } ) )
169, 15syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ( z  e.  x  /\  z  =/=  (/) )  ->  E. u  e.  x  ( u  =/=  (/)  /\  { ( f `  z ) ,  z }  =  { ( f `  u ) ,  u } ) )
17 prex 4682 . . . . . . . . . . . . . . . . . 18  |-  { ( f `  z ) ,  z }  e.  _V
18 eqeq1 2464 . . . . . . . . . . . . . . . . . . . 20  |-  ( g  =  { ( f `
 z ) ,  z }  ->  (
g  =  { ( f `  u ) ,  u }  <->  { (
f `  z ) ,  z }  =  { ( f `  u ) ,  u } ) )
1918anbi2d 703 . . . . . . . . . . . . . . . . . . 19  |-  ( g  =  { ( f `
 z ) ,  z }  ->  (
( u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } )  <->  ( u  =/=  (/)  /\  { ( f `  z ) ,  z }  =  { ( f `  u ) ,  u } ) ) )
2019rexbidv 2966 . . . . . . . . . . . . . . . . . 18  |-  ( g  =  { ( f `
 z ) ,  z }  ->  ( E. u  e.  x  ( u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } )  <->  E. u  e.  x  ( u  =/=  (/)  /\  { ( f `  z ) ,  z }  =  { ( f `  u ) ,  u } ) ) )
2117, 20elab 3243 . . . . . . . . . . . . . . . . 17  |-  ( { ( f `  z
) ,  z }  e.  { g  |  E. u  e.  x  ( u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  <->  E. u  e.  x  ( u  =/=  (/)  /\  { ( f `  z ) ,  z }  =  { ( f `  u ) ,  u } ) )
2216, 21sylibr 212 . . . . . . . . . . . . . . . 16  |-  ( ( z  e.  x  /\  z  =/=  (/) )  ->  { ( f `  z ) ,  z }  e.  { g  |  E. u  e.  x  ( u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) } )
23 vex 3109 . . . . . . . . . . . . . . . . . 18  |-  z  e. 
_V
2423prid2 4129 . . . . . . . . . . . . . . . . 17  |-  z  e. 
{ ( f `  z ) ,  z }
25 fvex 5867 . . . . . . . . . . . . . . . . . 18  |-  ( f `
 z )  e. 
_V
2625prid1 4128 . . . . . . . . . . . . . . . . 17  |-  ( f `
 z )  e. 
{ ( f `  z ) ,  z }
2724, 26pm3.2i 455 . . . . . . . . . . . . . . . 16  |-  ( z  e.  { ( f `
 z ) ,  z }  /\  (
f `  z )  e.  { ( f `  z ) ,  z } )
28 eleq2 2533 . . . . . . . . . . . . . . . . . 18  |-  ( v  =  { ( f `
 z ) ,  z }  ->  (
z  e.  v  <->  z  e.  { ( f `  z
) ,  z } ) )
29 eleq2 2533 . . . . . . . . . . . . . . . . . 18  |-  ( v  =  { ( f `
 z ) ,  z }  ->  (
( f `  z
)  e.  v  <->  ( f `  z )  e.  {
( f `  z
) ,  z } ) )
3028, 29anbi12d 710 . . . . . . . . . . . . . . . . 17  |-  ( v  =  { ( f `
 z ) ,  z }  ->  (
( z  e.  v  /\  ( f `  z )  e.  v )  <->  ( z  e. 
{ ( f `  z ) ,  z }  /\  ( f `
 z )  e. 
{ ( f `  z ) ,  z } ) ) )
3130rspcev 3207 . . . . . . . . . . . . . . . 16  |-  ( ( { ( f `  z ) ,  z }  e.  { g  |  E. u  e.  x  ( u  =/=  (/)  /\  g  =  {
( f `  u
) ,  u }
) }  /\  (
z  e.  { ( f `  z ) ,  z }  /\  ( f `  z
)  e.  { ( f `  z ) ,  z } ) )  ->  E. v  e.  { g  |  E. u  e.  x  (
u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  (
z  e.  v  /\  ( f `  z
)  e.  v ) )
3222, 27, 31sylancl 662 . . . . . . . . . . . . . . 15  |-  ( ( z  e.  x  /\  z  =/=  (/) )  ->  E. v  e.  { g  |  E. u  e.  x  (
u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  (
z  e.  v  /\  ( f `  z
)  e.  v ) )
33 eleq1 2532 . . . . . . . . . . . . . . . . 17  |-  ( w  =  ( f `  z )  ->  (
w  e.  z  <->  ( f `  z )  e.  z ) )
34 eleq1 2532 . . . . . . . . . . . . . . . . . . 19  |-  ( w  =  ( f `  z )  ->  (
w  e.  v  <->  ( f `  z )  e.  v ) )
3534anbi2d 703 . . . . . . . . . . . . . . . . . 18  |-  ( w  =  ( f `  z )  ->  (
( z  e.  v  /\  w  e.  v )  <->  ( z  e.  v  /\  ( f `
 z )  e.  v ) ) )
3635rexbidv 2966 . . . . . . . . . . . . . . . . 17  |-  ( w  =  ( f `  z )  ->  ( E. v  e.  { g  |  E. u  e.  x  ( u  =/=  (/)  /\  g  =  {
( f `  u
) ,  u }
) }  ( z  e.  v  /\  w  e.  v )  <->  E. v  e.  { g  |  E. u  e.  x  (
u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  (
z  e.  v  /\  ( f `  z
)  e.  v ) ) )
3733, 36anbi12d 710 . . . . . . . . . . . . . . . 16  |-  ( w  =  ( f `  z )  ->  (
( w  e.  z  /\  E. v  e. 
{ g  |  E. u  e.  x  (
u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  (
z  e.  v  /\  w  e.  v )
)  <->  ( ( f `
 z )  e.  z  /\  E. v  e.  { g  |  E. u  e.  x  (
u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  (
z  e.  v  /\  ( f `  z
)  e.  v ) ) ) )
3825, 37spcev 3198 . . . . . . . . . . . . . . 15  |-  ( ( ( f `  z
)  e.  z  /\  E. v  e.  { g  |  E. u  e.  x  ( u  =/=  (/)  /\  g  =  {
( f `  u
) ,  u }
) }  ( z  e.  v  /\  (
f `  z )  e.  v ) )  ->  E. w ( w  e.  z  /\  E. v  e.  { g  |  E. u  e.  x  (
u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  (
z  e.  v  /\  w  e.  v )
) )
3932, 38sylan2 474 . . . . . . . . . . . . . 14  |-  ( ( ( f `  z
)  e.  z  /\  ( z  e.  x  /\  z  =/=  (/) ) )  ->  E. w ( w  e.  z  /\  E. v  e.  { g  |  E. u  e.  x  ( u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  (
z  e.  v  /\  w  e.  v )
) )
4039ex 434 . . . . . . . . . . . . 13  |-  ( ( f `  z )  e.  z  ->  (
( z  e.  x  /\  z  =/=  (/) )  ->  E. w ( w  e.  z  /\  E. v  e.  { g  |  E. u  e.  x  (
u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  (
z  e.  v  /\  w  e.  v )
) ) )
413, 40syl8 70 . . . . . . . . . . . 12  |-  ( A. z  e.  x  (
z  =/=  (/)  ->  (
f `  z )  e.  z )  ->  (
z  e.  x  -> 
( z  =/=  (/)  ->  (
( z  e.  x  /\  z  =/=  (/) )  ->  E. w ( w  e.  z  /\  E. v  e.  { g  |  E. u  e.  x  (
u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  (
z  e.  v  /\  w  e.  v )
) ) ) ) )
4241impd 431 . . . . . . . . . . 11  |-  ( A. z  e.  x  (
z  =/=  (/)  ->  (
f `  z )  e.  z )  ->  (
( z  e.  x  /\  z  =/=  (/) )  -> 
( ( z  e.  x  /\  z  =/=  (/) )  ->  E. w
( w  e.  z  /\  E. v  e. 
{ g  |  E. u  e.  x  (
u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  (
z  e.  v  /\  w  e.  v )
) ) ) )
4342pm2.43d 48 . . . . . . . . . 10  |-  ( A. z  e.  x  (
z  =/=  (/)  ->  (
f `  z )  e.  z )  ->  (
( z  e.  x  /\  z  =/=  (/) )  ->  E. w ( w  e.  z  /\  E. v  e.  { g  |  E. u  e.  x  (
u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  (
z  e.  v  /\  w  e.  v )
) ) )
44 df-rex 2813 . . . . . . . . . . . . . 14  |-  ( E. v  e.  { g  |  E. u  e.  x  ( u  =/=  (/)  /\  g  =  {
( f `  u
) ,  u }
) }  ( z  e.  v  /\  w  e.  v )  <->  E. v
( v  e.  {
g  |  E. u  e.  x  ( u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  /\  ( z  e.  v  /\  w  e.  v ) ) )
45 vex 3109 . . . . . . . . . . . . . . . . . . . 20  |-  v  e. 
_V
46 eqeq1 2464 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( g  =  v  ->  (
g  =  { ( f `  u ) ,  u }  <->  v  =  { ( f `  u ) ,  u } ) )
4746anbi2d 703 . . . . . . . . . . . . . . . . . . . . 21  |-  ( g  =  v  ->  (
( u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } )  <->  ( u  =/=  (/)  /\  v  =  { ( f `  u ) ,  u } ) ) )
4847rexbidv 2966 . . . . . . . . . . . . . . . . . . . 20  |-  ( g  =  v  ->  ( E. u  e.  x  ( u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } )  <->  E. u  e.  x  ( u  =/=  (/)  /\  v  =  { ( f `  u ) ,  u } ) ) )
4945, 48elab 3243 . . . . . . . . . . . . . . . . . . 19  |-  ( v  e.  { g  |  E. u  e.  x  ( u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  <->  E. u  e.  x  ( u  =/=  (/)  /\  v  =  { ( f `  u ) ,  u } ) )
50 neeq1 2741 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( z  =  u  ->  (
z  =/=  (/)  <->  u  =/=  (/) ) )
51 fveq2 5857 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( z  =  u  ->  (
f `  z )  =  ( f `  u ) )
5251eleq1d 2529 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( z  =  u  ->  (
( f `  z
)  e.  z  <->  ( f `  u )  e.  z ) )
53 eleq2 2533 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( z  =  u  ->  (
( f `  u
)  e.  z  <->  ( f `  u )  e.  u
) )
5452, 53bitrd 253 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( z  =  u  ->  (
( f `  z
)  e.  z  <->  ( f `  u )  e.  u
) )
5550, 54imbi12d 320 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( z  =  u  ->  (
( z  =/=  (/)  ->  (
f `  z )  e.  z )  <->  ( u  =/=  (/)  ->  ( f `  u )  e.  u
) ) )
5655rspccv 3204 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( A. z  e.  x  (
z  =/=  (/)  ->  (
f `  z )  e.  z )  ->  (
u  e.  x  -> 
( u  =/=  (/)  ->  (
f `  u )  e.  u ) ) )
57 elirrv 8012 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  -.  w  e.  w
58 eleq2 2533 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( w  =  z  ->  (
w  e.  w  <->  w  e.  z ) )
5957, 58mtbii 302 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( w  =  z  ->  -.  w  e.  z )
6059con2i 120 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( w  e.  z  ->  -.  w  =  z )
61 vex 3109 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  w  e. 
_V
62 fvex 5867 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( f `
 u )  e. 
_V
63 vex 3109 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  u  e. 
_V
6461, 23, 62, 63prel12 4196 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( -.  w  =  z  -> 
( { w ,  z }  =  {
( f `  u
) ,  u }  <->  ( w  e.  { ( f `  u ) ,  u }  /\  z  e.  { (
f `  u ) ,  u } ) ) )
65 ancom 450 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( ( w  e.  v  /\  z  e.  v )  <->  ( z  e.  v  /\  w  e.  v )
)
66 eleq2 2533 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( v  =  { ( f `
 u ) ,  u }  ->  (
w  e.  v  <->  w  e.  { ( f `  u
) ,  u }
) )
67 eleq2 2533 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( v  =  { ( f `
 u ) ,  u }  ->  (
z  e.  v  <->  z  e.  { ( f `  u
) ,  u }
) )
6866, 67anbi12d 710 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( v  =  { ( f `
 u ) ,  u }  ->  (
( w  e.  v  /\  z  e.  v )  <->  ( w  e. 
{ ( f `  u ) ,  u }  /\  z  e.  {
( f `  u
) ,  u }
) ) )
6965, 68syl5rbbr 260 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( v  =  { ( f `
 u ) ,  u }  ->  (
( w  e.  {
( f `  u
) ,  u }  /\  z  e.  { ( f `  u ) ,  u } )  <-> 
( z  e.  v  /\  w  e.  v ) ) )
7064, 69sylan9bbr 700 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( ( v  =  { ( f `  u ) ,  u }  /\  -.  w  =  z
)  ->  ( {
w ,  z }  =  { ( f `
 u ) ,  u }  <->  ( z  e.  v  /\  w  e.  v ) ) )
7160, 70sylan2 474 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( v  =  { ( f `  u ) ,  u }  /\  w  e.  z )  ->  ( { w ,  z }  =  {
( f `  u
) ,  u }  <->  ( z  e.  v  /\  w  e.  v )
) )
7271adantrr 716 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( v  =  { ( f `  u ) ,  u }  /\  ( w  e.  z  /\  ( f `  u
)  e.  u ) )  ->  ( {
w ,  z }  =  { ( f `
 u ) ,  u }  <->  ( z  e.  v  /\  w  e.  v ) ) )
7372pm5.32da 641 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( v  =  { ( f `
 u ) ,  u }  ->  (
( ( w  e.  z  /\  ( f `
 u )  e.  u )  /\  {
w ,  z }  =  { ( f `
 u ) ,  u } )  <->  ( (
w  e.  z  /\  ( f `  u
)  e.  u )  /\  ( z  e.  v  /\  w  e.  v ) ) ) )
7461, 23, 62, 63preleq 8023 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( w  e.  z  /\  ( f `  u )  e.  u
)  /\  { w ,  z }  =  { ( f `  u ) ,  u } )  ->  (
w  =  ( f `
 u )  /\  z  =  u )
)
7573, 74syl6bir 229 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( v  =  { ( f `
 u ) ,  u }  ->  (
( ( w  e.  z  /\  ( f `
 u )  e.  u )  /\  (
z  e.  v  /\  w  e.  v )
)  ->  ( w  =  ( f `  u )  /\  z  =  u ) ) )
7651eqeq2d 2474 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( z  =  u  ->  (
w  =  ( f `
 z )  <->  w  =  ( f `  u
) ) )
7776biimparc 487 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( w  =  ( f `
 u )  /\  z  =  u )  ->  w  =  ( f `
 z ) )
7875, 77syl6 33 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( v  =  { ( f `
 u ) ,  u }  ->  (
( ( w  e.  z  /\  ( f `
 u )  e.  u )  /\  (
z  e.  v  /\  w  e.  v )
)  ->  w  =  ( f `  z
) ) )
7978exp4c 608 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( v  =  { ( f `
 u ) ,  u }  ->  (
w  e.  z  -> 
( ( f `  u )  e.  u  ->  ( ( z  e.  v  /\  w  e.  v )  ->  w  =  ( f `  z ) ) ) ) )
8079com13 80 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( f `  u )  e.  u  ->  (
w  e.  z  -> 
( v  =  {
( f `  u
) ,  u }  ->  ( ( z  e.  v  /\  w  e.  v )  ->  w  =  ( f `  z ) ) ) ) )
8156, 80syl8 70 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( A. z  e.  x  (
z  =/=  (/)  ->  (
f `  z )  e.  z )  ->  (
u  e.  x  -> 
( u  =/=  (/)  ->  (
w  e.  z  -> 
( v  =  {
( f `  u
) ,  u }  ->  ( ( z  e.  v  /\  w  e.  v )  ->  w  =  ( f `  z ) ) ) ) ) ) )
8281com4r 86 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( w  e.  z  ->  ( A. z  e.  x  ( z  =/=  (/)  ->  (
f `  z )  e.  z )  ->  (
u  e.  x  -> 
( u  =/=  (/)  ->  (
v  =  { ( f `  u ) ,  u }  ->  ( ( z  e.  v  /\  w  e.  v )  ->  w  =  ( f `  z
) ) ) ) ) ) )
8382imp 429 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( w  e.  z  /\  A. z  e.  x  ( z  =/=  (/)  ->  (
f `  z )  e.  z ) )  -> 
( u  e.  x  ->  ( u  =/=  (/)  ->  (
v  =  { ( f `  u ) ,  u }  ->  ( ( z  e.  v  /\  w  e.  v )  ->  w  =  ( f `  z
) ) ) ) ) )
8483imp4a 589 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( w  e.  z  /\  A. z  e.  x  ( z  =/=  (/)  ->  (
f `  z )  e.  z ) )  -> 
( u  e.  x  ->  ( ( u  =/=  (/)  /\  v  =  {
( f `  u
) ,  u }
)  ->  ( (
z  e.  v  /\  w  e.  v )  ->  w  =  ( f `
 z ) ) ) ) )
8584com3l 81 . . . . . . . . . . . . . . . . . . . 20  |-  ( u  e.  x  ->  (
( u  =/=  (/)  /\  v  =  { ( f `  u ) ,  u } )  ->  (
( w  e.  z  /\  A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  z ) )  ->  (
( z  e.  v  /\  w  e.  v )  ->  w  =  ( f `  z
) ) ) ) )
8685rexlimiv 2942 . . . . . . . . . . . . . . . . . . 19  |-  ( E. u  e.  x  ( u  =/=  (/)  /\  v  =  { ( f `  u ) ,  u } )  ->  (
( w  e.  z  /\  A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  z ) )  ->  (
( z  e.  v  /\  w  e.  v )  ->  w  =  ( f `  z
) ) ) )
8749, 86sylbi 195 . . . . . . . . . . . . . . . . . 18  |-  ( v  e.  { g  |  E. u  e.  x  ( u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  ->  ( ( w  e.  z  /\  A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  z ) )  ->  (
( z  e.  v  /\  w  e.  v )  ->  w  =  ( f `  z
) ) ) )
8887expd 436 . . . . . . . . . . . . . . . . 17  |-  ( v  e.  { g  |  E. u  e.  x  ( u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  ->  ( w  e.  z  -> 
( A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  z )  ->  ( (
z  e.  v  /\  w  e.  v )  ->  w  =  ( f `
 z ) ) ) ) )
8988com13 80 . . . . . . . . . . . . . . . 16  |-  ( A. z  e.  x  (
z  =/=  (/)  ->  (
f `  z )  e.  z )  ->  (
w  e.  z  -> 
( v  e.  {
g  |  E. u  e.  x  ( u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  ->  ( ( z  e.  v  /\  w  e.  v )  ->  w  =  ( f `  z
) ) ) ) )
9089imp4b 590 . . . . . . . . . . . . . . 15  |-  ( ( A. z  e.  x  ( z  =/=  (/)  ->  (
f `  z )  e.  z )  /\  w  e.  z )  ->  (
( v  e.  {
g  |  E. u  e.  x  ( u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  /\  ( z  e.  v  /\  w  e.  v ) )  ->  w  =  ( f `  z ) ) )
9190exlimdv 1695 . . . . . . . . . . . . . 14  |-  ( ( A. z  e.  x  ( z  =/=  (/)  ->  (
f `  z )  e.  z )  /\  w  e.  z )  ->  ( E. v ( v  e. 
{ g  |  E. u  e.  x  (
u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  /\  ( z  e.  v  /\  w  e.  v ) )  ->  w  =  ( f `  z ) ) )
9244, 91syl5bi 217 . . . . . . . . . . . . 13  |-  ( ( A. z  e.  x  ( z  =/=  (/)  ->  (
f `  z )  e.  z )  /\  w  e.  z )  ->  ( E. v  e.  { g  |  E. u  e.  x  ( u  =/=  (/)  /\  g  =  {
( f `  u
) ,  u }
) }  ( z  e.  v  /\  w  e.  v )  ->  w  =  ( f `  z ) ) )
9392expimpd 603 . . . . . . . . . . . 12  |-  ( A. z  e.  x  (
z  =/=  (/)  ->  (
f `  z )  e.  z )  ->  (
( w  e.  z  /\  E. v  e. 
{ g  |  E. u  e.  x  (
u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  (
z  e.  v  /\  w  e.  v )
)  ->  w  =  ( f `  z
) ) )
9493alrimiv 1690 . . . . . . . . . . 11  |-  ( A. z  e.  x  (
z  =/=  (/)  ->  (
f `  z )  e.  z )  ->  A. w
( ( w  e.  z  /\  E. v  e.  { g  |  E. u  e.  x  (
u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  (
z  e.  v  /\  w  e.  v )
)  ->  w  =  ( f `  z
) ) )
95 mo2icl 3275 . . . . . . . . . . 11  |-  ( A. w ( ( w  e.  z  /\  E. v  e.  { g  |  E. u  e.  x  ( u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  (
z  e.  v  /\  w  e.  v )
)  ->  w  =  ( f `  z
) )  ->  E* w ( w  e.  z  /\  E. v  e.  { g  |  E. u  e.  x  (
u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  (
z  e.  v  /\  w  e.  v )
) )
9694, 95syl 16 . . . . . . . . . 10  |-  ( A. z  e.  x  (
z  =/=  (/)  ->  (
f `  z )  e.  z )  ->  E* w ( w  e.  z  /\  E. v  e.  { g  |  E. u  e.  x  (
u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  (
z  e.  v  /\  w  e.  v )
) )
9743, 96jctird 544 . . . . . . . . 9  |-  ( A. z  e.  x  (
z  =/=  (/)  ->  (
f `  z )  e.  z )  ->  (
( z  e.  x  /\  z  =/=  (/) )  -> 
( E. w ( w  e.  z  /\  E. v  e.  { g  |  E. u  e.  x  ( u  =/=  (/)  /\  g  =  {
( f `  u
) ,  u }
) }  ( z  e.  v  /\  w  e.  v ) )  /\  E* w ( w  e.  z  /\  E. v  e.  { g  |  E. u  e.  x  (
u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  (
z  e.  v  /\  w  e.  v )
) ) ) )
98 df-reu 2814 . . . . . . . . . 10  |-  ( E! w  e.  z  E. v  e.  { g  |  E. u  e.  x  ( u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  (
z  e.  v  /\  w  e.  v )  <->  E! w ( w  e.  z  /\  E. v  e.  { g  |  E. u  e.  x  (
u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  (
z  e.  v  /\  w  e.  v )
) )
99 eu5 2298 . . . . . . . . . 10  |-  ( E! w ( w  e.  z  /\  E. v  e.  { g  |  E. u  e.  x  (
u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  (
z  e.  v  /\  w  e.  v )
)  <->  ( E. w
( w  e.  z  /\  E. v  e. 
{ g  |  E. u  e.  x  (
u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  (
z  e.  v  /\  w  e.  v )
)  /\  E* w
( w  e.  z  /\  E. v  e. 
{ g  |  E. u  e.  x  (
u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  (
z  e.  v  /\  w  e.  v )
) ) )
10098, 99bitri 249 . . . . . . . . 9  |-  ( E! w  e.  z  E. v  e.  { g  |  E. u  e.  x  ( u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  (
z  e.  v  /\  w  e.  v )  <->  ( E. w ( w  e.  z  /\  E. v  e.  { g  |  E. u  e.  x  ( u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  (
z  e.  v  /\  w  e.  v )
)  /\  E* w
( w  e.  z  /\  E. v  e. 
{ g  |  E. u  e.  x  (
u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  (
z  e.  v  /\  w  e.  v )
) ) )
10197, 100syl6ibr 227 . . . . . . . 8  |-  ( A. z  e.  x  (
z  =/=  (/)  ->  (
f `  z )  e.  z )  ->  (
( z  e.  x  /\  z  =/=  (/) )  ->  E! w  e.  z  E. v  e.  { g  |  E. u  e.  x  ( u  =/=  (/)  /\  g  =  {
( f `  u
) ,  u }
) }  ( z  e.  v  /\  w  e.  v ) ) )
102101expd 436 . . . . . . 7  |-  ( A. z  e.  x  (
z  =/=  (/)  ->  (
f `  z )  e.  z )  ->  (
z  e.  x  -> 
( z  =/=  (/)  ->  E! w  e.  z  E. v  e.  { g  |  E. u  e.  x  ( u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  (
z  e.  v  /\  w  e.  v )
) ) )
1032, 102ralrimi 2857 . . . . . 6  |-  ( A. z  e.  x  (
z  =/=  (/)  ->  (
f `  z )  e.  z )  ->  A. z  e.  x  ( z  =/=  (/)  ->  E! w  e.  z  E. v  e.  { g  |  E. u  e.  x  (
u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  (
z  e.  v  /\  w  e.  v )
) )
104 vex 3109 . . . . . . . . . . . 12  |-  f  e. 
_V
105104rnex 6708 . . . . . . . . . . 11  |-  ran  f  e.  _V
106 p0ex 4627 . . . . . . . . . . 11  |-  { (/) }  e.  _V
107105, 106unex 6573 . . . . . . . . . 10  |-  ( ran  f  u.  { (/) } )  e.  _V
108 vex 3109 . . . . . . . . . 10  |-  x  e. 
_V
109107, 108unex 6573 . . . . . . . . 9  |-  ( ( ran  f  u.  { (/)
} )  u.  x
)  e.  _V
110109pwex 4623 . . . . . . . 8  |-  ~P (
( ran  f  u.  {
(/) } )  u.  x
)  e.  _V
111 ssun1 3660 . . . . . . . . . . . . . . 15  |-  ( ran  f  u.  { (/) } )  C_  ( ( ran  f  u.  { (/) } )  u.  x )
112 fvrn0 5879 . . . . . . . . . . . . . . 15  |-  ( f `
 u )  e.  ( ran  f  u. 
{ (/) } )
113111, 112sselii 3494 . . . . . . . . . . . . . 14  |-  ( f `
 u )  e.  ( ( ran  f  u.  { (/) } )  u.  x )
114 elun2 3665 . . . . . . . . . . . . . 14  |-  ( u  e.  x  ->  u  e.  ( ( ran  f  u.  { (/) } )  u.  x ) )
115 prssi 4176 . . . . . . . . . . . . . 14  |-  ( ( ( f `  u
)  e.  ( ( ran  f  u.  { (/)
} )  u.  x
)  /\  u  e.  ( ( ran  f  u.  { (/) } )  u.  x ) )  ->  { ( f `  u ) ,  u }  C_  ( ( ran  f  u.  { (/) } )  u.  x ) )
116113, 114, 115sylancr 663 . . . . . . . . . . . . 13  |-  ( u  e.  x  ->  { ( f `  u ) ,  u }  C_  ( ( ran  f  u.  { (/) } )  u.  x ) )
117 prex 4682 . . . . . . . . . . . . . 14  |-  { ( f `  u ) ,  u }  e.  _V
118117elpw 4009 . . . . . . . . . . . . 13  |-  ( { ( f `  u
) ,  u }  e.  ~P ( ( ran  f  u.  { (/) } )  u.  x )  <->  { ( f `  u ) ,  u }  C_  ( ( ran  f  u.  { (/) } )  u.  x ) )
119116, 118sylibr 212 . . . . . . . . . . . 12  |-  ( u  e.  x  ->  { ( f `  u ) ,  u }  e.  ~P ( ( ran  f  u.  { (/) } )  u.  x ) )
120 eleq1 2532 . . . . . . . . . . . 12  |-  ( g  =  { ( f `
 u ) ,  u }  ->  (
g  e.  ~P (
( ran  f  u.  {
(/) } )  u.  x
)  <->  { ( f `  u ) ,  u }  e.  ~P (
( ran  f  u.  {
(/) } )  u.  x
) ) )
121119, 120syl5ibrcom 222 . . . . . . . . . . 11  |-  ( u  e.  x  ->  (
g  =  { ( f `  u ) ,  u }  ->  g  e.  ~P ( ( ran  f  u.  { (/)
} )  u.  x
) ) )
122121adantld 467 . . . . . . . . . 10  |-  ( u  e.  x  ->  (
( u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } )  ->  g  e.  ~P ( ( ran  f  u.  { (/) } )  u.  x ) ) )
123122rexlimiv 2942 . . . . . . . . 9  |-  ( E. u  e.  x  ( u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } )  ->  g  e.  ~P ( ( ran  f  u.  { (/) } )  u.  x ) )
124123abssi 3568 . . . . . . . 8  |-  { g  |  E. u  e.  x  ( u  =/=  (/)  /\  g  =  {
( f `  u
) ,  u }
) }  C_  ~P ( ( ran  f  u.  { (/) } )  u.  x )
125110, 124ssexi 4585 . . . . . . 7  |-  { g  |  E. u  e.  x  ( u  =/=  (/)  /\  g  =  {
( f `  u
) ,  u }
) }  e.  _V
126 rexeq 3052 . . . . . . . . . 10  |-  ( y  =  { g  |  E. u  e.  x  ( u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  ->  ( E. v  e.  y  ( z  e.  v  /\  w  e.  v )  <->  E. v  e.  {
g  |  E. u  e.  x  ( u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  (
z  e.  v  /\  w  e.  v )
) )
127126reubidv 3039 . . . . . . . . 9  |-  ( y  =  { g  |  E. u  e.  x  ( u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  ->  ( E! w  e.  z  E. v  e.  y  ( z  e.  v  /\  w  e.  v )  <->  E! w  e.  z  E. v  e.  {
g  |  E. u  e.  x  ( u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  (
z  e.  v  /\  w  e.  v )
) )
128127imbi2d 316 . . . . . . . 8  |-  ( y  =  { g  |  E. u  e.  x  ( u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  ->  ( ( z  =/=  (/)  ->  E! w  e.  z  E. v  e.  y  (
z  e.  v  /\  w  e.  v )
)  <->  ( z  =/=  (/)  ->  E! w  e.  z  E. v  e. 
{ g  |  E. u  e.  x  (
u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  (
z  e.  v  /\  w  e.  v )
) ) )
129128ralbidv 2896 . . . . . . 7  |-  ( y  =  { g  |  E. u  e.  x  ( u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  ->  ( A. z  e.  x  ( z  =/=  (/)  ->  E! w  e.  z  E. v  e.  y  (
z  e.  v  /\  w  e.  v )
)  <->  A. z  e.  x  ( z  =/=  (/)  ->  E! w  e.  z  E. v  e.  { g  |  E. u  e.  x  ( u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  (
z  e.  v  /\  w  e.  v )
) ) )
130125, 129spcev 3198 . . . . . 6  |-  ( A. z  e.  x  (
z  =/=  (/)  ->  E! w  e.  z  E. v  e.  { g  |  E. u  e.  x  ( u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  (
z  e.  v  /\  w  e.  v )
)  ->  E. y A. z  e.  x  ( z  =/=  (/)  ->  E! w  e.  z  E. v  e.  y  (
z  e.  v  /\  w  e.  v )
) )
131103, 130syl 16 . . . . 5  |-  ( A. z  e.  x  (
z  =/=  (/)  ->  (
f `  z )  e.  z )  ->  E. y A. z  e.  x  ( z  =/=  (/)  ->  E! w  e.  z  E. v  e.  y  (
z  e.  v  /\  w  e.  v )
) )
132131exlimiv 1693 . . . 4  |-  ( E. f A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  z )  ->  E. y A. z  e.  x  ( z  =/=  (/)  ->  E! w  e.  z  E. v  e.  y  (
z  e.  v  /\  w  e.  v )
) )
133132alimi 1609 . . 3  |-  ( A. x E. f A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  z )  ->  A. x E. y A. z  e.  x  ( z  =/=  (/)  ->  E! w  e.  z  E. v  e.  y  ( z  e.  v  /\  w  e.  v ) ) )
1341, 133sylbi 195 . 2  |-  (CHOICE  ->  A. x E. y A. z  e.  x  ( z  =/=  (/)  ->  E! w  e.  z  E. v  e.  y  ( z  e.  v  /\  w  e.  v ) ) )
135 dfac2a 8499 . 2  |-  ( A. x E. y A. z  e.  x  ( z  =/=  (/)  ->  E! w  e.  z  E. v  e.  y  ( z  e.  v  /\  w  e.  v ) )  -> CHOICE )
136134, 135impbii 188 1  |-  (CHOICE  <->  A. x E. y A. z  e.  x  ( z  =/=  (/)  ->  E! w  e.  z  E. v  e.  y  ( z  e.  v  /\  w  e.  v ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369   A.wal 1372    = wceq 1374   E.wex 1591    e. wcel 1762   E!weu 2268   E*wmo 2269   {cab 2445    =/= wne 2655   A.wral 2807   E.wrex 2808   E!wreu 2809    u. cun 3467    C_ wss 3469   (/)c0 3778   ~Pcpw 4003   {csn 4020   {cpr 4022   ran crn 4993   ` cfv 5579  CHOICEwac 8485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567  ax-reg 8007
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-ral 2812  df-rex 2813  df-reu 2814  df-rab 2816  df-v 3108  df-sbc 3325  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-op 4027  df-uni 4239  df-br 4441  df-opab 4499  df-mpt 4500  df-eprel 4784  df-id 4788  df-fr 4831  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-fv 5587  df-riota 6236  df-ac 8486
This theorem is referenced by:  dfac7  8501
  Copyright terms: Public domain W3C validator