MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfac2 Unicode version

Theorem dfac2 7967
Description: Axiom of Choice (first form) of [Enderton] p. 49 implies of our Axiom of Choice (in the form of ac3 8298). The proof does not make use of AC. Note that the Axiom of Regularity is used by the proof. Specifically, elirrv 7521 and preleq 7528 that are referenced in the proof each make use of Regularity for their derivations. (The reverse implication can be derived without using Regularity; see dfac2a 7966.) TODO: Fix label in comment, and put label changes into list at top of set.mm. (Contributed by NM, 5-Apr-2004.) (Revised by Mario Carneiro, 26-Jun-2015.)
Assertion
Ref Expression
dfac2  |-  (CHOICE  <->  A. x E. y A. z  e.  x  ( z  =/=  (/)  ->  E! w  e.  z  E. v  e.  y  ( z  e.  v  /\  w  e.  v ) ) )
Distinct variable group:    x, y, z, w, v

Proof of Theorem dfac2
Dummy variables  u  f  g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfac3 7958 . . 3  |-  (CHOICE  <->  A. x E. f A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  z ) )
2 nfra1 2716 . . . . . . 7  |-  F/ z A. z  e.  x  ( z  =/=  (/)  ->  (
f `  z )  e.  z )
3 rsp 2726 . . . . . . . . . . . . 13  |-  ( A. z  e.  x  (
z  =/=  (/)  ->  (
f `  z )  e.  z )  ->  (
z  e.  x  -> 
( z  =/=  (/)  ->  (
f `  z )  e.  z ) ) )
4 equid 1684 . . . . . . . . . . . . . . . . . . 19  |-  z  =  z
5 neeq1 2575 . . . . . . . . . . . . . . . . . . . . 21  |-  ( u  =  z  ->  (
u  =/=  (/)  <->  z  =/=  (/) ) )
6 eqeq1 2410 . . . . . . . . . . . . . . . . . . . . 21  |-  ( u  =  z  ->  (
u  =  z  <->  z  =  z ) )
75, 6anbi12d 692 . . . . . . . . . . . . . . . . . . . 20  |-  ( u  =  z  ->  (
( u  =/=  (/)  /\  u  =  z )  <->  ( z  =/=  (/)  /\  z  =  z ) ) )
87rspcev 3012 . . . . . . . . . . . . . . . . . . 19  |-  ( ( z  e.  x  /\  ( z  =/=  (/)  /\  z  =  z ) )  ->  E. u  e.  x  ( u  =/=  (/)  /\  u  =  z ) )
94, 8mpanr2 666 . . . . . . . . . . . . . . . . . 18  |-  ( ( z  e.  x  /\  z  =/=  (/) )  ->  E. u  e.  x  ( u  =/=  (/)  /\  u  =  z ) )
10 fveq2 5687 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( u  =  z  ->  (
f `  u )  =  ( f `  z ) )
1110preq1d 3849 . . . . . . . . . . . . . . . . . . . . 21  |-  ( u  =  z  ->  { ( f `  u ) ,  u }  =  { ( f `  z ) ,  u } )
12 preq2 3844 . . . . . . . . . . . . . . . . . . . . 21  |-  ( u  =  z  ->  { ( f `  z ) ,  u }  =  { ( f `  z ) ,  z } )
1311, 12eqtr2d 2437 . . . . . . . . . . . . . . . . . . . 20  |-  ( u  =  z  ->  { ( f `  z ) ,  z }  =  { ( f `  u ) ,  u } )
1413anim2i 553 . . . . . . . . . . . . . . . . . . 19  |-  ( ( u  =/=  (/)  /\  u  =  z )  -> 
( u  =/=  (/)  /\  {
( f `  z
) ,  z }  =  { ( f `
 u ) ,  u } ) )
1514reximi 2773 . . . . . . . . . . . . . . . . . 18  |-  ( E. u  e.  x  ( u  =/=  (/)  /\  u  =  z )  ->  E. u  e.  x  ( u  =/=  (/)  /\  {
( f `  z
) ,  z }  =  { ( f `
 u ) ,  u } ) )
169, 15syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ( z  e.  x  /\  z  =/=  (/) )  ->  E. u  e.  x  ( u  =/=  (/)  /\  { ( f `  z ) ,  z }  =  { ( f `  u ) ,  u } ) )
17 prex 4366 . . . . . . . . . . . . . . . . . 18  |-  { ( f `  z ) ,  z }  e.  _V
18 eqeq1 2410 . . . . . . . . . . . . . . . . . . . 20  |-  ( g  =  { ( f `
 z ) ,  z }  ->  (
g  =  { ( f `  u ) ,  u }  <->  { (
f `  z ) ,  z }  =  { ( f `  u ) ,  u } ) )
1918anbi2d 685 . . . . . . . . . . . . . . . . . . 19  |-  ( g  =  { ( f `
 z ) ,  z }  ->  (
( u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } )  <->  ( u  =/=  (/)  /\  { ( f `  z ) ,  z }  =  { ( f `  u ) ,  u } ) ) )
2019rexbidv 2687 . . . . . . . . . . . . . . . . . 18  |-  ( g  =  { ( f `
 z ) ,  z }  ->  ( E. u  e.  x  ( u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } )  <->  E. u  e.  x  ( u  =/=  (/)  /\  { ( f `  z ) ,  z }  =  { ( f `  u ) ,  u } ) ) )
2117, 20elab 3042 . . . . . . . . . . . . . . . . 17  |-  ( { ( f `  z
) ,  z }  e.  { g  |  E. u  e.  x  ( u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  <->  E. u  e.  x  ( u  =/=  (/)  /\  { ( f `  z ) ,  z }  =  { ( f `  u ) ,  u } ) )
2216, 21sylibr 204 . . . . . . . . . . . . . . . 16  |-  ( ( z  e.  x  /\  z  =/=  (/) )  ->  { ( f `  z ) ,  z }  e.  { g  |  E. u  e.  x  ( u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) } )
23 vex 2919 . . . . . . . . . . . . . . . . . 18  |-  z  e. 
_V
2423prid2 3873 . . . . . . . . . . . . . . . . 17  |-  z  e. 
{ ( f `  z ) ,  z }
25 fvex 5701 . . . . . . . . . . . . . . . . . 18  |-  ( f `
 z )  e. 
_V
2625prid1 3872 . . . . . . . . . . . . . . . . 17  |-  ( f `
 z )  e. 
{ ( f `  z ) ,  z }
2724, 26pm3.2i 442 . . . . . . . . . . . . . . . 16  |-  ( z  e.  { ( f `
 z ) ,  z }  /\  (
f `  z )  e.  { ( f `  z ) ,  z } )
28 eleq2 2465 . . . . . . . . . . . . . . . . . 18  |-  ( v  =  { ( f `
 z ) ,  z }  ->  (
z  e.  v  <->  z  e.  { ( f `  z
) ,  z } ) )
29 eleq2 2465 . . . . . . . . . . . . . . . . . 18  |-  ( v  =  { ( f `
 z ) ,  z }  ->  (
( f `  z
)  e.  v  <->  ( f `  z )  e.  {
( f `  z
) ,  z } ) )
3028, 29anbi12d 692 . . . . . . . . . . . . . . . . 17  |-  ( v  =  { ( f `
 z ) ,  z }  ->  (
( z  e.  v  /\  ( f `  z )  e.  v )  <->  ( z  e. 
{ ( f `  z ) ,  z }  /\  ( f `
 z )  e. 
{ ( f `  z ) ,  z } ) ) )
3130rspcev 3012 . . . . . . . . . . . . . . . 16  |-  ( ( { ( f `  z ) ,  z }  e.  { g  |  E. u  e.  x  ( u  =/=  (/)  /\  g  =  {
( f `  u
) ,  u }
) }  /\  (
z  e.  { ( f `  z ) ,  z }  /\  ( f `  z
)  e.  { ( f `  z ) ,  z } ) )  ->  E. v  e.  { g  |  E. u  e.  x  (
u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  (
z  e.  v  /\  ( f `  z
)  e.  v ) )
3222, 27, 31sylancl 644 . . . . . . . . . . . . . . 15  |-  ( ( z  e.  x  /\  z  =/=  (/) )  ->  E. v  e.  { g  |  E. u  e.  x  (
u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  (
z  e.  v  /\  ( f `  z
)  e.  v ) )
33 eleq1 2464 . . . . . . . . . . . . . . . . 17  |-  ( w  =  ( f `  z )  ->  (
w  e.  z  <->  ( f `  z )  e.  z ) )
34 eleq1 2464 . . . . . . . . . . . . . . . . . . 19  |-  ( w  =  ( f `  z )  ->  (
w  e.  v  <->  ( f `  z )  e.  v ) )
3534anbi2d 685 . . . . . . . . . . . . . . . . . 18  |-  ( w  =  ( f `  z )  ->  (
( z  e.  v  /\  w  e.  v )  <->  ( z  e.  v  /\  ( f `
 z )  e.  v ) ) )
3635rexbidv 2687 . . . . . . . . . . . . . . . . 17  |-  ( w  =  ( f `  z )  ->  ( E. v  e.  { g  |  E. u  e.  x  ( u  =/=  (/)  /\  g  =  {
( f `  u
) ,  u }
) }  ( z  e.  v  /\  w  e.  v )  <->  E. v  e.  { g  |  E. u  e.  x  (
u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  (
z  e.  v  /\  ( f `  z
)  e.  v ) ) )
3733, 36anbi12d 692 . . . . . . . . . . . . . . . 16  |-  ( w  =  ( f `  z )  ->  (
( w  e.  z  /\  E. v  e. 
{ g  |  E. u  e.  x  (
u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  (
z  e.  v  /\  w  e.  v )
)  <->  ( ( f `
 z )  e.  z  /\  E. v  e.  { g  |  E. u  e.  x  (
u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  (
z  e.  v  /\  ( f `  z
)  e.  v ) ) ) )
3825, 37spcev 3003 . . . . . . . . . . . . . . 15  |-  ( ( ( f `  z
)  e.  z  /\  E. v  e.  { g  |  E. u  e.  x  ( u  =/=  (/)  /\  g  =  {
( f `  u
) ,  u }
) }  ( z  e.  v  /\  (
f `  z )  e.  v ) )  ->  E. w ( w  e.  z  /\  E. v  e.  { g  |  E. u  e.  x  (
u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  (
z  e.  v  /\  w  e.  v )
) )
3932, 38sylan2 461 . . . . . . . . . . . . . 14  |-  ( ( ( f `  z
)  e.  z  /\  ( z  e.  x  /\  z  =/=  (/) ) )  ->  E. w ( w  e.  z  /\  E. v  e.  { g  |  E. u  e.  x  ( u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  (
z  e.  v  /\  w  e.  v )
) )
4039ex 424 . . . . . . . . . . . . 13  |-  ( ( f `  z )  e.  z  ->  (
( z  e.  x  /\  z  =/=  (/) )  ->  E. w ( w  e.  z  /\  E. v  e.  { g  |  E. u  e.  x  (
u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  (
z  e.  v  /\  w  e.  v )
) ) )
413, 40syl8 67 . . . . . . . . . . . 12  |-  ( A. z  e.  x  (
z  =/=  (/)  ->  (
f `  z )  e.  z )  ->  (
z  e.  x  -> 
( z  =/=  (/)  ->  (
( z  e.  x  /\  z  =/=  (/) )  ->  E. w ( w  e.  z  /\  E. v  e.  { g  |  E. u  e.  x  (
u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  (
z  e.  v  /\  w  e.  v )
) ) ) ) )
4241imp3a 421 . . . . . . . . . . 11  |-  ( A. z  e.  x  (
z  =/=  (/)  ->  (
f `  z )  e.  z )  ->  (
( z  e.  x  /\  z  =/=  (/) )  -> 
( ( z  e.  x  /\  z  =/=  (/) )  ->  E. w
( w  e.  z  /\  E. v  e. 
{ g  |  E. u  e.  x  (
u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  (
z  e.  v  /\  w  e.  v )
) ) ) )
4342pm2.43d 46 . . . . . . . . . 10  |-  ( A. z  e.  x  (
z  =/=  (/)  ->  (
f `  z )  e.  z )  ->  (
( z  e.  x  /\  z  =/=  (/) )  ->  E. w ( w  e.  z  /\  E. v  e.  { g  |  E. u  e.  x  (
u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  (
z  e.  v  /\  w  e.  v )
) ) )
44 df-rex 2672 . . . . . . . . . . . . . 14  |-  ( E. v  e.  { g  |  E. u  e.  x  ( u  =/=  (/)  /\  g  =  {
( f `  u
) ,  u }
) }  ( z  e.  v  /\  w  e.  v )  <->  E. v
( v  e.  {
g  |  E. u  e.  x  ( u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  /\  ( z  e.  v  /\  w  e.  v ) ) )
45 vex 2919 . . . . . . . . . . . . . . . . . . . 20  |-  v  e. 
_V
46 eqeq1 2410 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( g  =  v  ->  (
g  =  { ( f `  u ) ,  u }  <->  v  =  { ( f `  u ) ,  u } ) )
4746anbi2d 685 . . . . . . . . . . . . . . . . . . . . 21  |-  ( g  =  v  ->  (
( u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } )  <->  ( u  =/=  (/)  /\  v  =  { ( f `  u ) ,  u } ) ) )
4847rexbidv 2687 . . . . . . . . . . . . . . . . . . . 20  |-  ( g  =  v  ->  ( E. u  e.  x  ( u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } )  <->  E. u  e.  x  ( u  =/=  (/)  /\  v  =  { ( f `  u ) ,  u } ) ) )
4945, 48elab 3042 . . . . . . . . . . . . . . . . . . 19  |-  ( v  e.  { g  |  E. u  e.  x  ( u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  <->  E. u  e.  x  ( u  =/=  (/)  /\  v  =  { ( f `  u ) ,  u } ) )
50 neeq1 2575 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( z  =  u  ->  (
z  =/=  (/)  <->  u  =/=  (/) ) )
51 fveq2 5687 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( z  =  u  ->  (
f `  z )  =  ( f `  u ) )
5251eleq1d 2470 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( z  =  u  ->  (
( f `  z
)  e.  z  <->  ( f `  u )  e.  z ) )
53 eleq2 2465 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( z  =  u  ->  (
( f `  u
)  e.  z  <->  ( f `  u )  e.  u
) )
5452, 53bitrd 245 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( z  =  u  ->  (
( f `  z
)  e.  z  <->  ( f `  u )  e.  u
) )
5550, 54imbi12d 312 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( z  =  u  ->  (
( z  =/=  (/)  ->  (
f `  z )  e.  z )  <->  ( u  =/=  (/)  ->  ( f `  u )  e.  u
) ) )
5655rspccv 3009 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( A. z  e.  x  (
z  =/=  (/)  ->  (
f `  z )  e.  z )  ->  (
u  e.  x  -> 
( u  =/=  (/)  ->  (
f `  u )  e.  u ) ) )
57 elirrv 7521 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  -.  w  e.  w
58 eleq2 2465 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( w  =  z  ->  (
w  e.  w  <->  w  e.  z ) )
5957, 58mtbii 294 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( w  =  z  ->  -.  w  e.  z )
6059con2i 114 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( w  e.  z  ->  -.  w  =  z )
61 vex 2919 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  w  e. 
_V
62 fvex 5701 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( f `
 u )  e. 
_V
63 vex 2919 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  u  e. 
_V
6461, 23, 62, 63prel12 3935 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( -.  w  =  z  -> 
( { w ,  z }  =  {
( f `  u
) ,  u }  <->  ( w  e.  { ( f `  u ) ,  u }  /\  z  e.  { (
f `  u ) ,  u } ) ) )
65 ancom 438 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( ( w  e.  v  /\  z  e.  v )  <->  ( z  e.  v  /\  w  e.  v )
)
66 eleq2 2465 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( v  =  { ( f `
 u ) ,  u }  ->  (
w  e.  v  <->  w  e.  { ( f `  u
) ,  u }
) )
67 eleq2 2465 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( v  =  { ( f `
 u ) ,  u }  ->  (
z  e.  v  <->  z  e.  { ( f `  u
) ,  u }
) )
6866, 67anbi12d 692 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( v  =  { ( f `
 u ) ,  u }  ->  (
( w  e.  v  /\  z  e.  v )  <->  ( w  e. 
{ ( f `  u ) ,  u }  /\  z  e.  {
( f `  u
) ,  u }
) ) )
6965, 68syl5rbbr 252 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( v  =  { ( f `
 u ) ,  u }  ->  (
( w  e.  {
( f `  u
) ,  u }  /\  z  e.  { ( f `  u ) ,  u } )  <-> 
( z  e.  v  /\  w  e.  v ) ) )
7064, 69sylan9bbr 682 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( ( v  =  { ( f `  u ) ,  u }  /\  -.  w  =  z
)  ->  ( {
w ,  z }  =  { ( f `
 u ) ,  u }  <->  ( z  e.  v  /\  w  e.  v ) ) )
7160, 70sylan2 461 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( v  =  { ( f `  u ) ,  u }  /\  w  e.  z )  ->  ( { w ,  z }  =  {
( f `  u
) ,  u }  <->  ( z  e.  v  /\  w  e.  v )
) )
7271adantrr 698 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( v  =  { ( f `  u ) ,  u }  /\  ( w  e.  z  /\  ( f `  u
)  e.  u ) )  ->  ( {
w ,  z }  =  { ( f `
 u ) ,  u }  <->  ( z  e.  v  /\  w  e.  v ) ) )
7372pm5.32da 623 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( v  =  { ( f `
 u ) ,  u }  ->  (
( ( w  e.  z  /\  ( f `
 u )  e.  u )  /\  {
w ,  z }  =  { ( f `
 u ) ,  u } )  <->  ( (
w  e.  z  /\  ( f `  u
)  e.  u )  /\  ( z  e.  v  /\  w  e.  v ) ) ) )
7461, 23, 62, 63preleq 7528 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( w  e.  z  /\  ( f `  u )  e.  u
)  /\  { w ,  z }  =  { ( f `  u ) ,  u } )  ->  (
w  =  ( f `
 u )  /\  z  =  u )
)
7573, 74syl6bir 221 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( v  =  { ( f `
 u ) ,  u }  ->  (
( ( w  e.  z  /\  ( f `
 u )  e.  u )  /\  (
z  e.  v  /\  w  e.  v )
)  ->  ( w  =  ( f `  u )  /\  z  =  u ) ) )
7651eqeq2d 2415 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( z  =  u  ->  (
w  =  ( f `
 z )  <->  w  =  ( f `  u
) ) )
7776biimparc 474 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( w  =  ( f `
 u )  /\  z  =  u )  ->  w  =  ( f `
 z ) )
7875, 77syl6 31 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( v  =  { ( f `
 u ) ,  u }  ->  (
( ( w  e.  z  /\  ( f `
 u )  e.  u )  /\  (
z  e.  v  /\  w  e.  v )
)  ->  w  =  ( f `  z
) ) )
7978exp4c 592 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( v  =  { ( f `
 u ) ,  u }  ->  (
w  e.  z  -> 
( ( f `  u )  e.  u  ->  ( ( z  e.  v  /\  w  e.  v )  ->  w  =  ( f `  z ) ) ) ) )
8079com13 76 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( f `  u )  e.  u  ->  (
w  e.  z  -> 
( v  =  {
( f `  u
) ,  u }  ->  ( ( z  e.  v  /\  w  e.  v )  ->  w  =  ( f `  z ) ) ) ) )
8156, 80syl8 67 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( A. z  e.  x  (
z  =/=  (/)  ->  (
f `  z )  e.  z )  ->  (
u  e.  x  -> 
( u  =/=  (/)  ->  (
w  e.  z  -> 
( v  =  {
( f `  u
) ,  u }  ->  ( ( z  e.  v  /\  w  e.  v )  ->  w  =  ( f `  z ) ) ) ) ) ) )
8281com4r 82 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( w  e.  z  ->  ( A. z  e.  x  ( z  =/=  (/)  ->  (
f `  z )  e.  z )  ->  (
u  e.  x  -> 
( u  =/=  (/)  ->  (
v  =  { ( f `  u ) ,  u }  ->  ( ( z  e.  v  /\  w  e.  v )  ->  w  =  ( f `  z
) ) ) ) ) ) )
8382imp 419 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( w  e.  z  /\  A. z  e.  x  ( z  =/=  (/)  ->  (
f `  z )  e.  z ) )  -> 
( u  e.  x  ->  ( u  =/=  (/)  ->  (
v  =  { ( f `  u ) ,  u }  ->  ( ( z  e.  v  /\  w  e.  v )  ->  w  =  ( f `  z
) ) ) ) ) )
8483imp4a 573 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( w  e.  z  /\  A. z  e.  x  ( z  =/=  (/)  ->  (
f `  z )  e.  z ) )  -> 
( u  e.  x  ->  ( ( u  =/=  (/)  /\  v  =  {
( f `  u
) ,  u }
)  ->  ( (
z  e.  v  /\  w  e.  v )  ->  w  =  ( f `
 z ) ) ) ) )
8584com3l 77 . . . . . . . . . . . . . . . . . . . 20  |-  ( u  e.  x  ->  (
( u  =/=  (/)  /\  v  =  { ( f `  u ) ,  u } )  ->  (
( w  e.  z  /\  A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  z ) )  ->  (
( z  e.  v  /\  w  e.  v )  ->  w  =  ( f `  z
) ) ) ) )
8685rexlimiv 2784 . . . . . . . . . . . . . . . . . . 19  |-  ( E. u  e.  x  ( u  =/=  (/)  /\  v  =  { ( f `  u ) ,  u } )  ->  (
( w  e.  z  /\  A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  z ) )  ->  (
( z  e.  v  /\  w  e.  v )  ->  w  =  ( f `  z
) ) ) )
8749, 86sylbi 188 . . . . . . . . . . . . . . . . . 18  |-  ( v  e.  { g  |  E. u  e.  x  ( u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  ->  ( ( w  e.  z  /\  A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  z ) )  ->  (
( z  e.  v  /\  w  e.  v )  ->  w  =  ( f `  z
) ) ) )
8887exp3a 426 . . . . . . . . . . . . . . . . 17  |-  ( v  e.  { g  |  E. u  e.  x  ( u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  ->  ( w  e.  z  -> 
( A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  z )  ->  ( (
z  e.  v  /\  w  e.  v )  ->  w  =  ( f `
 z ) ) ) ) )
8988com13 76 . . . . . . . . . . . . . . . 16  |-  ( A. z  e.  x  (
z  =/=  (/)  ->  (
f `  z )  e.  z )  ->  (
w  e.  z  -> 
( v  e.  {
g  |  E. u  e.  x  ( u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  ->  ( ( z  e.  v  /\  w  e.  v )  ->  w  =  ( f `  z
) ) ) ) )
9089imp4b 574 . . . . . . . . . . . . . . 15  |-  ( ( A. z  e.  x  ( z  =/=  (/)  ->  (
f `  z )  e.  z )  /\  w  e.  z )  ->  (
( v  e.  {
g  |  E. u  e.  x  ( u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  /\  ( z  e.  v  /\  w  e.  v ) )  ->  w  =  ( f `  z ) ) )
9190exlimdv 1643 . . . . . . . . . . . . . 14  |-  ( ( A. z  e.  x  ( z  =/=  (/)  ->  (
f `  z )  e.  z )  /\  w  e.  z )  ->  ( E. v ( v  e. 
{ g  |  E. u  e.  x  (
u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  /\  ( z  e.  v  /\  w  e.  v ) )  ->  w  =  ( f `  z ) ) )
9244, 91syl5bi 209 . . . . . . . . . . . . 13  |-  ( ( A. z  e.  x  ( z  =/=  (/)  ->  (
f `  z )  e.  z )  /\  w  e.  z )  ->  ( E. v  e.  { g  |  E. u  e.  x  ( u  =/=  (/)  /\  g  =  {
( f `  u
) ,  u }
) }  ( z  e.  v  /\  w  e.  v )  ->  w  =  ( f `  z ) ) )
9392expimpd 587 . . . . . . . . . . . 12  |-  ( A. z  e.  x  (
z  =/=  (/)  ->  (
f `  z )  e.  z )  ->  (
( w  e.  z  /\  E. v  e. 
{ g  |  E. u  e.  x  (
u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  (
z  e.  v  /\  w  e.  v )
)  ->  w  =  ( f `  z
) ) )
9493alrimiv 1638 . . . . . . . . . . 11  |-  ( A. z  e.  x  (
z  =/=  (/)  ->  (
f `  z )  e.  z )  ->  A. w
( ( w  e.  z  /\  E. v  e.  { g  |  E. u  e.  x  (
u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  (
z  e.  v  /\  w  e.  v )
)  ->  w  =  ( f `  z
) ) )
95 mo2icl 3073 . . . . . . . . . . 11  |-  ( A. w ( ( w  e.  z  /\  E. v  e.  { g  |  E. u  e.  x  ( u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  (
z  e.  v  /\  w  e.  v )
)  ->  w  =  ( f `  z
) )  ->  E* w ( w  e.  z  /\  E. v  e.  { g  |  E. u  e.  x  (
u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  (
z  e.  v  /\  w  e.  v )
) )
9694, 95syl 16 . . . . . . . . . 10  |-  ( A. z  e.  x  (
z  =/=  (/)  ->  (
f `  z )  e.  z )  ->  E* w ( w  e.  z  /\  E. v  e.  { g  |  E. u  e.  x  (
u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  (
z  e.  v  /\  w  e.  v )
) )
9743, 96jctird 529 . . . . . . . . 9  |-  ( A. z  e.  x  (
z  =/=  (/)  ->  (
f `  z )  e.  z )  ->  (
( z  e.  x  /\  z  =/=  (/) )  -> 
( E. w ( w  e.  z  /\  E. v  e.  { g  |  E. u  e.  x  ( u  =/=  (/)  /\  g  =  {
( f `  u
) ,  u }
) }  ( z  e.  v  /\  w  e.  v ) )  /\  E* w ( w  e.  z  /\  E. v  e.  { g  |  E. u  e.  x  (
u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  (
z  e.  v  /\  w  e.  v )
) ) ) )
98 df-reu 2673 . . . . . . . . . 10  |-  ( E! w  e.  z  E. v  e.  { g  |  E. u  e.  x  ( u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  (
z  e.  v  /\  w  e.  v )  <->  E! w ( w  e.  z  /\  E. v  e.  { g  |  E. u  e.  x  (
u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  (
z  e.  v  /\  w  e.  v )
) )
99 eu5 2292 . . . . . . . . . 10  |-  ( E! w ( w  e.  z  /\  E. v  e.  { g  |  E. u  e.  x  (
u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  (
z  e.  v  /\  w  e.  v )
)  <->  ( E. w
( w  e.  z  /\  E. v  e. 
{ g  |  E. u  e.  x  (
u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  (
z  e.  v  /\  w  e.  v )
)  /\  E* w
( w  e.  z  /\  E. v  e. 
{ g  |  E. u  e.  x  (
u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  (
z  e.  v  /\  w  e.  v )
) ) )
10098, 99bitri 241 . . . . . . . . 9  |-  ( E! w  e.  z  E. v  e.  { g  |  E. u  e.  x  ( u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  (
z  e.  v  /\  w  e.  v )  <->  ( E. w ( w  e.  z  /\  E. v  e.  { g  |  E. u  e.  x  ( u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  (
z  e.  v  /\  w  e.  v )
)  /\  E* w
( w  e.  z  /\  E. v  e. 
{ g  |  E. u  e.  x  (
u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  (
z  e.  v  /\  w  e.  v )
) ) )
10197, 100syl6ibr 219 . . . . . . . 8  |-  ( A. z  e.  x  (
z  =/=  (/)  ->  (
f `  z )  e.  z )  ->  (
( z  e.  x  /\  z  =/=  (/) )  ->  E! w  e.  z  E. v  e.  { g  |  E. u  e.  x  ( u  =/=  (/)  /\  g  =  {
( f `  u
) ,  u }
) }  ( z  e.  v  /\  w  e.  v ) ) )
102101exp3a 426 . . . . . . 7  |-  ( A. z  e.  x  (
z  =/=  (/)  ->  (
f `  z )  e.  z )  ->  (
z  e.  x  -> 
( z  =/=  (/)  ->  E! w  e.  z  E. v  e.  { g  |  E. u  e.  x  ( u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  (
z  e.  v  /\  w  e.  v )
) ) )
1032, 102ralrimi 2747 . . . . . 6  |-  ( A. z  e.  x  (
z  =/=  (/)  ->  (
f `  z )  e.  z )  ->  A. z  e.  x  ( z  =/=  (/)  ->  E! w  e.  z  E. v  e.  { g  |  E. u  e.  x  (
u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  (
z  e.  v  /\  w  e.  v )
) )
104 vex 2919 . . . . . . . . . . . 12  |-  f  e. 
_V
105104rnex 5092 . . . . . . . . . . 11  |-  ran  f  e.  _V
106 p0ex 4346 . . . . . . . . . . 11  |-  { (/) }  e.  _V
107105, 106unex 4666 . . . . . . . . . 10  |-  ( ran  f  u.  { (/) } )  e.  _V
108 vex 2919 . . . . . . . . . 10  |-  x  e. 
_V
109107, 108unex 4666 . . . . . . . . 9  |-  ( ( ran  f  u.  { (/)
} )  u.  x
)  e.  _V
110109pwex 4342 . . . . . . . 8  |-  ~P (
( ran  f  u.  {
(/) } )  u.  x
)  e.  _V
111 ssun1 3470 . . . . . . . . . . . . . . 15  |-  ( ran  f  u.  { (/) } )  C_  ( ( ran  f  u.  { (/) } )  u.  x )
112 fvrn0 5712 . . . . . . . . . . . . . . 15  |-  ( f `
 u )  e.  ( ran  f  u. 
{ (/) } )
113111, 112sselii 3305 . . . . . . . . . . . . . 14  |-  ( f `
 u )  e.  ( ( ran  f  u.  { (/) } )  u.  x )
114 elun2 3475 . . . . . . . . . . . . . 14  |-  ( u  e.  x  ->  u  e.  ( ( ran  f  u.  { (/) } )  u.  x ) )
115 prssi 3914 . . . . . . . . . . . . . 14  |-  ( ( ( f `  u
)  e.  ( ( ran  f  u.  { (/)
} )  u.  x
)  /\  u  e.  ( ( ran  f  u.  { (/) } )  u.  x ) )  ->  { ( f `  u ) ,  u }  C_  ( ( ran  f  u.  { (/) } )  u.  x ) )
116113, 114, 115sylancr 645 . . . . . . . . . . . . 13  |-  ( u  e.  x  ->  { ( f `  u ) ,  u }  C_  ( ( ran  f  u.  { (/) } )  u.  x ) )
117 prex 4366 . . . . . . . . . . . . . 14  |-  { ( f `  u ) ,  u }  e.  _V
118117elpw 3765 . . . . . . . . . . . . 13  |-  ( { ( f `  u
) ,  u }  e.  ~P ( ( ran  f  u.  { (/) } )  u.  x )  <->  { ( f `  u ) ,  u }  C_  ( ( ran  f  u.  { (/) } )  u.  x ) )
119116, 118sylibr 204 . . . . . . . . . . . 12  |-  ( u  e.  x  ->  { ( f `  u ) ,  u }  e.  ~P ( ( ran  f  u.  { (/) } )  u.  x ) )
120 eleq1 2464 . . . . . . . . . . . 12  |-  ( g  =  { ( f `
 u ) ,  u }  ->  (
g  e.  ~P (
( ran  f  u.  {
(/) } )  u.  x
)  <->  { ( f `  u ) ,  u }  e.  ~P (
( ran  f  u.  {
(/) } )  u.  x
) ) )
121119, 120syl5ibrcom 214 . . . . . . . . . . 11  |-  ( u  e.  x  ->  (
g  =  { ( f `  u ) ,  u }  ->  g  e.  ~P ( ( ran  f  u.  { (/)
} )  u.  x
) ) )
122121adantld 454 . . . . . . . . . 10  |-  ( u  e.  x  ->  (
( u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } )  ->  g  e.  ~P ( ( ran  f  u.  { (/) } )  u.  x ) ) )
123122rexlimiv 2784 . . . . . . . . 9  |-  ( E. u  e.  x  ( u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } )  ->  g  e.  ~P ( ( ran  f  u.  { (/) } )  u.  x ) )
124123abssi 3378 . . . . . . . 8  |-  { g  |  E. u  e.  x  ( u  =/=  (/)  /\  g  =  {
( f `  u
) ,  u }
) }  C_  ~P ( ( ran  f  u.  { (/) } )  u.  x )
125110, 124ssexi 4308 . . . . . . 7  |-  { g  |  E. u  e.  x  ( u  =/=  (/)  /\  g  =  {
( f `  u
) ,  u }
) }  e.  _V
126 rexeq 2865 . . . . . . . . . 10  |-  ( y  =  { g  |  E. u  e.  x  ( u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  ->  ( E. v  e.  y  ( z  e.  v  /\  w  e.  v )  <->  E. v  e.  {
g  |  E. u  e.  x  ( u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  (
z  e.  v  /\  w  e.  v )
) )
127126reubidv 2852 . . . . . . . . 9  |-  ( y  =  { g  |  E. u  e.  x  ( u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  ->  ( E! w  e.  z  E. v  e.  y  ( z  e.  v  /\  w  e.  v )  <->  E! w  e.  z  E. v  e.  {
g  |  E. u  e.  x  ( u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  (
z  e.  v  /\  w  e.  v )
) )
128127imbi2d 308 . . . . . . . 8  |-  ( y  =  { g  |  E. u  e.  x  ( u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  ->  ( ( z  =/=  (/)  ->  E! w  e.  z  E. v  e.  y  (
z  e.  v  /\  w  e.  v )
)  <->  ( z  =/=  (/)  ->  E! w  e.  z  E. v  e. 
{ g  |  E. u  e.  x  (
u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  (
z  e.  v  /\  w  e.  v )
) ) )
129128ralbidv 2686 . . . . . . 7  |-  ( y  =  { g  |  E. u  e.  x  ( u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  ->  ( A. z  e.  x  ( z  =/=  (/)  ->  E! w  e.  z  E. v  e.  y  (
z  e.  v  /\  w  e.  v )
)  <->  A. z  e.  x  ( z  =/=  (/)  ->  E! w  e.  z  E. v  e.  { g  |  E. u  e.  x  ( u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  (
z  e.  v  /\  w  e.  v )
) ) )
130125, 129spcev 3003 . . . . . 6  |-  ( A. z  e.  x  (
z  =/=  (/)  ->  E! w  e.  z  E. v  e.  { g  |  E. u  e.  x  ( u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  (
z  e.  v  /\  w  e.  v )
)  ->  E. y A. z  e.  x  ( z  =/=  (/)  ->  E! w  e.  z  E. v  e.  y  (
z  e.  v  /\  w  e.  v )
) )
131103, 130syl 16 . . . . 5  |-  ( A. z  e.  x  (
z  =/=  (/)  ->  (
f `  z )  e.  z )  ->  E. y A. z  e.  x  ( z  =/=  (/)  ->  E! w  e.  z  E. v  e.  y  (
z  e.  v  /\  w  e.  v )
) )
132131exlimiv 1641 . . . 4  |-  ( E. f A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  z )  ->  E. y A. z  e.  x  ( z  =/=  (/)  ->  E! w  e.  z  E. v  e.  y  (
z  e.  v  /\  w  e.  v )
) )
133132alimi 1565 . . 3  |-  ( A. x E. f A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  z )  ->  A. x E. y A. z  e.  x  ( z  =/=  (/)  ->  E! w  e.  z  E. v  e.  y  ( z  e.  v  /\  w  e.  v ) ) )
1341, 133sylbi 188 . 2  |-  (CHOICE  ->  A. x E. y A. z  e.  x  ( z  =/=  (/)  ->  E! w  e.  z  E. v  e.  y  ( z  e.  v  /\  w  e.  v ) ) )
135 dfac2a 7966 . 2  |-  ( A. x E. y A. z  e.  x  ( z  =/=  (/)  ->  E! w  e.  z  E. v  e.  y  ( z  e.  v  /\  w  e.  v ) )  -> CHOICE )
136134, 135impbii 181 1  |-  (CHOICE  <->  A. x E. y A. z  e.  x  ( z  =/=  (/)  ->  E! w  e.  z  E. v  e.  y  ( z  e.  v  /\  w  e.  v ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359   A.wal 1546   E.wex 1547    = wceq 1649    e. wcel 1721   E!weu 2254   E*wmo 2255   {cab 2390    =/= wne 2567   A.wral 2666   E.wrex 2667   E!wreu 2668    u. cun 3278    C_ wss 3280   (/)c0 3588   ~Pcpw 3759   {csn 3774   {cpr 3775   ran crn 4838   ` cfv 5413  CHOICEwac 7952
This theorem is referenced by:  dfac7  7968
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-reg 7516
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-reu 2673  df-rab 2675  df-v 2918  df-sbc 3122  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-br 4173  df-opab 4227  df-mpt 4228  df-eprel 4454  df-id 4458  df-fr 4501  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-fv 5421  df-riota 6508  df-ac 7953
  Copyright terms: Public domain W3C validator